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A B S T R A C T

Data augmentation is widely applied to medical image analysis tasks in limited datasets with imbalanced classes
and insufficient annotations. However, traditional augmentation techniques cannot supply extra information,
making the performance of diagnosis unsatisfactory. GAN-based generative methods have thus been proposed
to obtain additional useful information to realize more effective data augmentation; but existing generative
data augmentation techniques mainly encounter two problems: (i) Current generative data augmentation lacks
of the capability in using cross-domain differential information to extend limited datasets. (ii) The existing
generative methods cannot provide effective supervised information in medical image segmentation tasks. To
solve these problems, we propose an attention-guided cross-domain tumor image generation model (CDA-GAN)
with an information enhancement strategy. The CDA-GAN can generate diverse samples to expand the scale
of datasets, improving the performance of medical image diagnosis and treatment tasks. In particular, we
incorporate channel attention into a CycleGAN-based cross-domain generation network that captures inter-
domain information and generates positive or negative samples of brain tumors. In addition, we propose a
semi-supervised spatial attention strategy to guide spatial information of features at the pixel level in tumor
generation. Furthermore, we add spectral normalization to prevent the discriminator from mode collapse
and stabilize the training procedure. Finally, to resolve an inapplicability problem in the segmentation task,
we further propose an application strategy of using this data augmentation model to achieve more accurate
medical image segmentation with limited data. Experimental studies on two public brain tumor datasets (BraTS
and TCIA) show that the proposed CDA-GAN model greatly outperforms the state-of-the-art generative data
augmentation in both practical medical image classification tasks and segmentation tasks; e.g. CDA-GAN is
0.50%, 1.72%, 2.05%, and 0.21% better than the best SOTA baseline in terms of ACC, AUC, Recall, and F1,
respectively, in the classification task of BraTS, while its improvements w.r.t. the best SOTA baseline in terms
of Dice, Sens, HD95, and mIOU, in the segmentation task of TCIA are 2.50%, 0.90%, 14.96%, and 4.18%,
respectively.
1. Introduction

At present, medical image analysis encounters a common dilemma,
requiring a large dataset for model training [1]. However, the collection
of medical imaging data faces many constraints. In the context of
classification tasks, the model’s performance is invariably tethered to
the size of the available data. Concurrently, the problem of data class
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imbalance also contributes to a reduction in the model’s precision [2].
For segmentation tasks [3,4], accurate annotations require a lot of
time and energy for experts and are difficult to obtain, which limits
the performance improvement of the segmentation model. To achieve
accurate medical image analysis with limited data, a data augmentation
method is necessary for medical image analysis.
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Currently, many traditional and GAN-based data augmentation
techniques [5–8] have been proposed to overcome this problem.
Although traditional data augmentation solutions (e.g., crop, rotation,
and translations) have achieved some successes in the analysis of nature
images, it is unreasonable to be used in the medical image analysis
tasks, because the images that are synthesized by traditional methods
cannot contain related clinical manifestation, which thus makes it
unable to achieve satisfactory improvements [9]. Differently, GAN-
based data augmentation generates samples with richer and more
reasonable information (i.e., contain rational clinical manifestations) to
further improve the training process of medical image analysis. GAN-
based data augmentation methods in medical imaging applications are
divided into single-domain generation and cross-domain generation.
In the area of single-domain generation, Frid et al. [10] presented a
strategy based on Generative Adversarial Networks (GANs) for Data
Augmentation (DA) in classification tasks, utilizing Deep Convolutional
Generative Adversarial Networks (DCGAN) [6] to synthesize lung le-
sion Computed Tomography (CT) images, thereby enhancing the size
of the training dataset. In terms of cross-domain generation, which
is primarily geared towards modal transitions, a notable approach
is proposed by Meng et al. [11]. They introduced a unified multi-
modal model that relies on a conditional score-based generative model
(SGM) for stochastic sampling from a target probability distribution.
In addition, UAGGAN [12,13] and AGGAN [14,15] are two state-of-
the-art cross-domain attention-guided image generation models, which
are based on CycleGAN and both add an attention module to the
model. Although UAGGAN and AGGAN have a certain cross-domain
learning ability because of the application of attention mechanism,
these cross-domain methods have the following shortcomings in the
application of medical imaging tasks: (i) lack of inter-class difference
information problem: these cross-domain models perform transforma-
tions on the same features (e.g. modality transformations) with good
generative performance. However, the current SOTA model is weak in
learning different information (e.g. with/without lesion), which cannot
obtain satisfactory generation results for different samples. Especially,
weakening the distinction between different categories of synthetic
images will result in unacceptably high false-positive rates in the
subsequent medical image analysis tasks. (ii) inapplicable problem
in the segmentation tasks: In classification tasks applied in tumor
iagnosis, generative data augmentation usually combines the gener-
ted and original images as a training set, and the class annotations of
he synthetic images are known in the generation process. However,
enerative augmentation cannot provide the ground truth of synthetic
mages in segmentation tasks applied in tumor treatment. This limits
he application of generative data augmentation to image analysis
asks.

Therefore, we first propose an advanced GAN-based generative
ata augmentation model, Cross-Domain Attention-guided GAN model
CDA-GAN), to resolve the lack of inter-class difference information
roblem. Then, we further propose an application strategy of using
his data augmentation model in the medical image segmentation task,
hich thus resolves the inapplicable problem in the segmentation task,
nd achieves more accurate medical image segmentation with limited
ata. Generally, CDA-GAN is mainly based on CycleGAN with three
mprovements, the (average-max squeeze-and-excitation) AMSE block,
emi-supervised attention-guided generator, and attention-guided dis-
riminator with spectral normalization, which thus can overcome the
ack of inter-class difference information problem using CycleGAN-
ased domain conversion mechanism. Specifically, we first propose
o add an AMSE block to CycleGAN, which performs channel-wise
eature recalibration to improve the representational ability of the
etwork. Then, we further propose to integrate semi-supervised spatial
ttention into the generator of CycleGAN to force the generator to focus
n the ‘regions of interest’. By adding the attention mechanism and
2

ptimization of the adversarial loss, the attention-guided generator can
produce the region of discriminator ‘interest’, and by adding the pixel-
wise loss of generated attention map with the region of interest to the
training procedure of the attention-guided generator, the generator can
produce more precise spatial attention maps, thus enhance the power
of spatial attention mechanism. Finally, the attention-guided discrimi-
nator is incorporated into CycleGAN to force the discriminator to pay
more attention to the changing part and the spectral normalization can
prevent the discriminator from mode collapse and stabilize the training
procedure.

Furthermore, we propose an application strategy for applying CDA-
GAN models to medical image segmentation tasks. Specifically, for
classification tasks, the application of CDA-GAN is straightforward: we
can use generated images to expand or balance the training dataset.
However, when we apply CDA-GAN-generated images to segmentation
tasks, we encounter a problem: the generated images lack supervision
information, so we need to discover the supervision information for the
generated images. Because our synthetic tumor image is generated by
adding the tumor to the original real tumor-free image, the straightfor-
ward solution is to directly subtract the synthetic tumor image and the
original tumor-free image, and then obtain the result (i.e., difference
image) as pseudo labels. However, the experiment has proved that this
application method is very ineffective because the different image is not
clean enough, i.e., it not only has tumor information but also has a lot
of other brain tissue information (The generated image is not exactly
the same as the original image except for the tumor area). This is the
inapplicable problem in the segmentation tasks we mentioned earlier.
To resolve this problem, we propose a new application strategy of using
the synthesized images and the different images to enhance the feature
learning capability of the downstream segmentation model.

Instead of using the different images as the segmentation pseudo-
masks, we propose a way of information enhancement in response to
its need for accurate pixel information. Specifically, this way is divided
into two stages for using the cross-domain information brought by
cross-domain. In the first stage, an enhanced map is obtained for the
focal part by extracting the difference between output and input. In
the second stage, the enhanced map concatenating with raw images
as input for pixel-level subsequent tasks weakens the subsequent task’s
difficulty. We believe that the information enhancement strategy will
enhance the utilization of the generated image, and help the model
achieve better segmentation performances. This information enhance-
ment method that takes the difference as part of the input data can
not only reduce the influence of other tissue information (i.e., noise
information) in the difference image on the model feature learning
but also effectively use the information of the lesion contained in it
to improve the feature learning ability of the segmentation model.
Therefore, with the help of the proposed new application strategy, CDA-
GAN can not only be used in medical image classification (mainly for
diagnosis) but also medical image segmentation (mainly for treatment),
allowing the new generative data augmentation solution to be used to
solve the limited data problem in the computer-aided medical diagnosis
and treatment in clinical practices.

The contributions of this paper are summarized as follows:

• We first identify the limited data problem in the medical image
diagnosis and treatment tasks. To resolve the problem, different
from traditional data augmentations, we propose a novel genera-
tive data augmentation solution, which can generate images with
meaningful clinical manifestation.

• Then we propose a Cross-Domain Attention-Guided GAN (CDA-
GAN) model, which is an advanced CycleGAN that utilizes a new
AMSE block, a semi-supervised spatial attention module, and the
spectral normalization to overcome the lack of inter-domain dif-
ference information problem and generate more clinically rational
and robust medical images than the existing single-domain and
cross-domain generative methods.

• Finally, we identify the inapplicable problem in the segmentation
task of the GAN-based generative data augmentation models. To

effectively enhance the feature learning capability of the down-
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stream segmentation model, we further propose a new application
strategy to use the synthesized images and the different images.

• Extensive experimental studies are conducted on two public brain
MRI brain tumor datasets, and the results show the following: (i)
Using the proposed CDA-GAN for generative data augmentation
is much more effective than data augmentation using the tradi-
tion DA method and the state-of-the-art GAN-based generative
baselines in enhancing the performances of downstream classi-
fication and segmentation tasks. (ii) Ablation studies show that
the proposed three advancements are all effective and essential
for CDA-GAN to achieve superior generative DA performances
in both tasks. (iii) We compare the effect of using the pro-
posed application strategy and directly using different images
as the segmentation pseudo-masks on the performances of the
downstream segmentation tasks; the results show that, due to
the noise information in different images, using different images
as pseudo-masks will not bring any improvements but reduce
the models’ segmentation performances, which thus proves the
existence of the inapplicable problem in the segmentation task
and the effectiveness of the proposed application strategy.

The rest of this paper is organized as shown below. In Section 2, we
eview the related work. In Section 3, we present the proposed model in
etail. In Section 4, we describe the dataset and experimental settings.
n Section 5, we show the results in detail. Then, we conclude our work
nd introduce our feature works in Section 6 and Section 7.

. Related work

Medical Image Generation for Data Augmentation. In recent
ears, data augmentation on medical images has received much more
ttention, and two methods are typically used: (i) affine transfor-
ations on given images [16], (ii) generation of new samples from

iven images [5]. For the first method, although affine translations are
asy to implement and quickly increase the number of the training
amples, the transformed images are quite similar and have limited
ontribution over the external test data [17]. Besides, operations such
s shearing and translation may distort some important information of
he original images, such as the shape features [7,18]. For the second
ethod, inspired by the development of GANs, [7] introduces GAN to

enerate pneumonia CT images and feed them into the classification
odel for better learning of lesion features. Then, to generate high-

esolution images, Han et al. [5] introduced CPGGAN, an extension
f Progressive Growing GAN (PGGAN) [19,20]. This advancement in-
orporates a conditional module capable of generating medical images
ith lesions at targeted locations. Similarly, to enhance the quality,
etail, and diversity of generated images, Multi-Scale Gradient GAN
MSG-GAN) [21] employs multi-scale features and information transfer
echanisms. However, these studies focus on single-domain transfor-
ation generative models. The single-domain limitation constrains the
odel’s ability to acquire diversified information related to the input,

hereby reducing its robustness and capacity to learn deep features.
his underlines the necessity for further research into multi-domain
ransformation models to address these limitations. There exists some
esearches [11,22,23] in medical images applying CycleGAN [24],
hich learns the mappings between two unpaired image domains in
ifferent modalities. Meng et al. [11] propose the unified multi-modal
onditional score-based generative model to take advantage of the
core-based generative model (SGM) in modeling and stochastically
ampling a target probability distribution, and further extend SGM to
ross-modal conditional synthesis for various missing-modality config-
rations in a unified framework. Besides, many works [22,23] related
o medical image modality translation demonstrate that adversarial
oss with additional cycle-consistence loss proposed by CycleGAN can
roduce medical images with rich details. Although these studies have
3

ddressed the conversion between medical imaging modalities, the key
problem of data limitation due to category imbalance remains. Com-
pared to traditional single-domain generation methods, the CycleGAN
solution based on cross-domain image generation performs well on the
modality conversion task because CycleGAN assigns a consistent focus
to each pixel of the input image. But as mentioned earlier, it has not yet
solved the problem of data imbalance and is unable to focus on lesion
areas in medical images. Therefore, we add attention mechanisms to
the CycleGAN model to better focus on areas of interest and increase
the amount of positive and negative samples.

Attention-Guided Image Generation Solution. The current re-
search on GAN-based attention mechanisms is developed in two direc-
tions. The first direction is to use extra data to provide attention. For
example, Roy et al. propose a semantics-aware translation model [25],
which uses the object mask annotations from each dataset as extra input
data. Sun et al. [26] generate a facial mask by using FCN for face
attribute manipulation. Moreover, Lai et al. [27] propose CWT-GAN,
which can generate diverse and higher-quality images with the aid of
the weight transfer mechanism, since features learned by discriminator
tend to be more expressive than those learned by generator trained via
maximum likelihood. The second direction is to train another segmen-
tation or attention model to generate attention maps and fit them into
the system. For example, Liu et al. [28] propose an implicit style func-
tion (ISF) to straightforwardly achieve multi-modal and multi-domain
image-to-image translation from pre-trained unconditional generators.
Kearney et al. [29] suggest an attention-aware, cycle-consistent gen-
erative adversarial network (A-CycleGAN) enhanced with variational
autoencoding as a superior alternative to current state-of-the-art MR-
to-CT image translation methods. Yang et al. [30] propose to add
an attention module to predict an attention map to guide the im-
age translation process. Xu et al. [31] propose SAGAN for the image
generation task. However, all these methods are suitable for single-
domain transformation-generative attention mechanisms that do not
acquire stable and desired attention characteristics in cross-domain
transformation. Unsupervised Attention-Guided Image to Image Gener-
ation (UAGGAN) applied in [12,13], and Attention-Guided Generative
Adversarial Networks (AGGAN) applied in [14,15] are two state-of-
the-art cross-domain attention-guided image generation models, which
are also based on CycleGAN and are the most similar methods to our
work. They both add an attention module to the model, output the
attention map, and later multiply the output of the transformation
function with the attention map pixel by pixel. They differ in that
the attention module and the conversion function of UAGGAN are
two separate and independent modules, while the attention module
and the conversion function of AGGAN share the encoder part. But
they all have limits. Firstly, the problem of AGGAN and UAGGAN is
that in the discriminator part, both models focus on the learning of
the attention part and lack the learning of the overall information
of the image. This results in the model being less resilient to the
tissue parts of the image of interest. Additionally, both models only
improve the ability of CycleGAN to adjust image details from the
perspective of spatial attention. Therefore, we propose the CDA-GAN
model, which uses different attention mechanisms from AGGAN and
UAGGAN. Specifically, to capture channel attention and improve the
ability of the model to express features, we add an AMSE block. To
address the issue of the inability of the above methods (UAGGAN,
AGGAN) to generate more accurate attention maps, a semi-supervised
spatial attention module is used to guide the training process of the
attention module to obtain a more precise attention map. Furthermore,
we added spectral normalization to the discriminator. It can prevent the
discriminator from mode collapse and stabilize the training procedure
due to over-focusing on the changing part.

In summary, to enhance the generative capability of CycleGAN,
the stability of the model when performing the generative task, and
the attention of the model to the region of interest, we propose a
Cross-Domain Attention-Guided CycleGAN (CDA-GAN), which is an

improvement on our previous work [31] on the attention mechanism.
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Fig. 1. Illustration of our proposed Cross-Domain Attention-Guided GAN (CDA-GAN). The symbols with a subscript 𝑃 denote abnormal images that contain target objects originating
from the positive sample domain, while symbols with a subscript 𝑁 represent normal images from the negative sample domain. Here, 𝐺𝑀𝑃 stands for Global Max Pooling and 𝐺𝐴𝑃
represents Global Average Pooling. 𝐺𝑃 / 𝐺𝑁 : The Resblock generators within the model. 𝐴𝑃 / 𝐴𝑁 : The spatial attention modules. 𝐷𝑃 / 𝐷𝑁 : The attention-guided discriminators.
𝑁𝑟: The real normal images. 𝑁𝑔 : The generated normal images. 𝑁𝑔𝑔 : The reconstructed normal images used for calculating cycle-consistency loss. 𝑃𝑟: The real abnormal images
with the target object. 𝑃𝑔 : The generated abnormal images with the target object. 𝑃𝑔𝑔 : The reconstructed abnormal images with the target object, which are used to calculate
cycle-consistency loss. The term 𝐹𝑡 denotes the convolutional component of the original residual module, which incorporates non-linear transformations into the model. These

transformations can be optimized through the backpropagation algorithm.
The results of classification and segmentation experiments, which com-
pare the two methods of two SOTA attention-guided image generation
solutions: UAGGAN [12,13], and AGGAN [14,15] with CDA-GAN, show
that our model generates data augmentation images can improve the
accuracy of medical image analysis.

3. Methodology

The proposal of the Cross-Domain Attention-Guided GAN (CDA-
GAN) for generative medical image data augmentation is driven by sev-
eral key observations. Primarily, we identified that single-domain gen-
eration methods frequently encounter difficulties in generating high-
resolution medical images that are interpretable by radiologists [5,32].
The generation of high-resolution images necessitates larger models
equipped with a greater number of parameters. However, the restricted
size of available datasets poses significant challenges to training these
models effectively, often leading to convergence difficulties. Concur-
rently, we observed the extensive utilization of modality conversion in
data augmentation methodologies within the medical domain [30,33].
This approach facilitates the stable generation of high-resolution imag-
ing data, even when constrained by limited dataset sizes. Given these
considerations, we devised a novel strategy: treating positive samples
(those with lesions) and negative samples (those without lesions) as
two distinct domains for transfer generation. This approach enables
the production of meaningful and high-resolution medical images,
which can significantly enhance the effectiveness of downstream tasks.
Our method, therefore, aims to address the challenges encountered
by previous single-domain generation methods, promising superior
performance in the generation and augmentation of medical imaging
data.

The scheme is mainly divided into two parts: in the first part, we use
a CycleGAN-based cross-domain generative network integrating atten-
tion mechanism, called CDA-GAN in Fig. 1, to generate positive samples
(with lesions) and negative samples (without lesions). Moreover, the
4

two domains involved in the term cross-domain are the positive sample
domain and the negative sample domain, which are labeled P and
𝑁 in the following text respectively. Logical implementation of the
network is described in Algorithm 1. And the workflows of downstream
classification and segmentation tasks are shown in Algorithm 2 and Al-
gorithm 3, respectively. In the second part, we propose an information
enhancement strategy for the segmentation task in Fig. 3. Sections 3.1
and 3.2 describe the technical details of the overall scheme.

3.1. Cross domain attention-guided GAN (CDA-GAN) model

Our goal is to construct a cross-domain generative model that imple-
ments data augmentation for medical image analysis tasks, such as the
expansion of positive and negative sample data for disease diagnosis.
Denote 𝑋 = {𝑁,𝑃 }𝑖 as a dataset consisting of 𝑖 patients, where 𝑁
represents negative samples and P is positive samples. However, we
found the generative model lacks learning of domain commonality
and characteristics in generating images, which leads to limited data
augmentation in tumor classification tasks. To solve this problem,
we consider CycleGAN as a backbone network to compare and learn
the correlations and differences between the two domains. We define
𝐺𝑁 : 𝑃 → 𝑁 as the mapping function from positive to negative
samples, and 𝐺𝑃 : 𝑁 → 𝑃 as the mapping function from negative to
positive samples. Then, the goal of the system becomes P (𝑁,𝑃 ) ∼
P′ (𝑁,𝑃 ,𝐺𝑁 (𝑁,𝑃 ) , 𝐺𝑃 (𝑁,𝑃 )

)

, where P (𝑁,𝑃 ) stands for a medical
image analysis system and P′ (𝑁,𝑃 ,𝐺𝑁 (𝑁,𝑃 ) , 𝐺𝑃 (𝑁,𝑃 )

)

stands for a
medical image analysis system with generative data augmentation.

However, while CycleGAN’s cross-domain generative model is ca-
pable of effectively transforming modalities, it falls short in generating
and eliminating the content of lesions. We propose a CycleGAN-based
cross-domain attention generation model, called CDA-GAN, to build a
medical image analysis system with data augmentation.

As illustrated in Fig. 1, this model includes three major components:
the average-max squeeze-and-excitation (AMSE) block, semi-supervised

attention-guided generator, and attention-guided discriminator with
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spectral normalization, which thus can overcome the lack of inter-
class difference information problem using CycleGAN-based domain
conversion mechanism. Our improvements can encourage models to
generate specific regions of brain images in cross-domain samples, lead-
ing to improvements in medical image analysis in small and imbalanced
datasets.

3.1.1. Channel attention module
Specific brain disease is often highly relevant to particular re-

gions [34,35]. However, in CycleGAN, the ability of the residual con-
volution generator module and the discriminator is weak to capture
hierarchical patterns. Inspired by the SENet [36], a type of convo-
lutional neural network that introduces a mechanism to allow the
network to perform dynamic channel-wise feature recalibration. To
achieve this end, the model adaptively adjusts the importance of each
channel based on the information aggregated globally across the spa-
tial dimensions of the input feature map. Therefore, the information
aggregated globally across the spatial dimensions plays a crucial role
in the subsequent re-weighting of feature importance in the channel
dimension. However, SENet’s use of either max pooling or mean pool-
ing alone to handle spatial information is not optimal. As a result, we
propose the Average-Max Squeeze-and-Excitation (AMSE) module to
better handle the information aggregated globally across the spatial
dimensions thus improving the quality of the channel-wise feature
recalibration, which allows the model to accurately capture the differ-
ences between the two domains and correctly translate them. There
is another work that proposed a SE block with both average pooling
and max pooling, called CBAM block [37]. The differences between
our proposed AMSE-Residual block and the CBAM block lie in the
squeeze part and attention mechanism. In the squeeze part, for the
proposed AMSE block, the features from max-pooling and meaning-
pooling are added together before being passed through a network
consisting of two fully connected (FC) layers with a ReLU activation
function in between, while in the channel attention part of CBAM block,
the features passed through a shared network then added together
to re-denoting the weights of the channels. In multi-task models, a
shared network is typically employed to enhance feature extraction
capabilities, thereby improving the performance across multiple tasks.
However, models using a shared network structure across multiple
inputs generally aim to achieve approximate outcomes while reducing
the number of model parameters. By placing the addition operation
before the fully connected (FC) layer, we can better integrate the
features from max-pooling and mean-pooling through the backpropaga-
tion algorithm. This approach allows the model to effectively combine
the features of both pooling methods, rather than simply finding a
compromise in optimization direction between mean-pooling and max-
pooling feature input. As for the attention mechanism, the CBAM block
integrates both channel attention and spatial attention within a single
module. In contrast, we separate these two types of attention. We
believe that such a separation can better enhance the model’s ability
to learn representations and improve the flexibility of model training
since we can use different labels to guide the learning process of the
model’s attention mechanism.

The detailed architecture of this module is presented in Fig. 1, the
proposed AMSE-Residual module consists of two blocks: the transfor-
mation functions 𝐹𝑡, and the AMSE block. 𝐹𝑡 represents the convolu-
tion part of the original residual module. This introduces non-linear
transformations to the model, which can be optimized through the
backpropagation algorithm. 𝐹𝑡 takes the image features 𝑋 ∈ 𝑅𝐶×𝐻×𝑊

captured in the last AMSE-Residual block as input, and outputs trans-
formed image features 𝑈 ∈ 𝑅𝐶×𝐻×𝑊 . At the squeeze stage, a statistic
𝑍 ∈ 𝑅𝐶×1×1 is generated by ignoring 𝑈 ’s spatial dimensions 𝐻 × 𝑊 .
The 𝑝𝑡ℎ element of 𝑍 is calculated by:

𝑍𝑝 = 𝐹𝑠𝑞(𝑈 ) = 1
𝐻 ×𝑊

𝐻−1
∑

𝑊 −1
∑

𝑈 (𝑝, 𝑖, 𝑗) + max𝑈 (𝑝, 𝑖, 𝑗) (1)
5

𝑖=0 𝑗=0
To learn the nonlinear interactions between channels and maintain
nonreciprocal relations, a gating mechanism consisting of two fully
connected (FC) layers and a sigmoid layer is used in the excitation
phase. Denoting the two FC layers and the final sigmoid layer cascaded
in Fig. 1 by 𝐹𝑒𝑥, given the output of the squeeze stage 𝑍, the output
activates 𝑍′ ∈ 𝑅𝐶×1×1 of the excitation stage is:

𝑍′ = 𝐹𝑒𝑥(𝑍) (2)

The final outputs 𝑋′ ∈ 𝑅𝐶×𝐻×𝑊 of this AMSE-Residual module is
the reassignment of the value on the channel of 𝑈 plus the origin input
𝑋, 𝐹𝑟𝑒𝑠𝑐𝑎𝑙𝑒 denoting the function to reassignment the channel of 𝑈 , it is
known that the shape of 𝑈 is 𝐶, 𝐻 , 𝑊 and the shape of 𝑍′ is 𝐶, so the
reassignment of the channel of 𝑈 is calculated as the value of each item
of 𝑈 on the same channel multiplied by the value of the corresponding
layer of 𝑍′, which is calculated as:

𝑋′ = 𝐹𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑍′, 𝑈 ) +𝑋 = 𝑍′𝑈 +𝑋 (3)

This module allows the network to automatically determine the
importance of each feature channel and adjust its weights by the pro-
posed Average-Max pooling-based squeeze operation and the following
FC layer-based excitation operation. This dynamic feature recalibra-
tion enhances the representational power of the model, improving its
understanding of the input data.

3.1.2. Semi-supervised spatial attention module
In this paper, the generation task focuses on the perfect restoration

of tumor regions and generating positive samples with clear structural
details and matching tumor image features. Therefore, we consider that
the attention mechanism should be dynamically distributed in each
image region to enhance the capability of the CycleGAN in the proposed
medical image generation task. The above purpose is achieved in two
steps: (i) locating the area for manipulation and (ii) taking the proper
translation in the located area. Both unsupervised attention-guided
image-to-image generative adversarial networks (UAGGAN) [12,13]
and attention-guided generative adversarial networks (AGGAN) [14,
15] are performing image generation following the above approach.
However, both UAGGAN and AGGAN have some issues. The first is
the insufficient generative ability of the models. Although they can
generally eliminate the original tumor lesions and restore negative
images, even UAGGAN, which is the better performer in both UAGGAN
and AGGAN, still has the problem of incomplete tumor elimination.
This problem is due to the weak feature representation capability of the
model, which leads to incomplete tumor elimination in the localized
region. This problem can be solved by adding the channel attention
method introduced in the previous section. Secondly, the model cannot
generate attention maps accurately, resulting in incomplete localization
of the operation area. Therefore, we propose a semi-supervised atten-
tion module to use a tumor mask to co-guide the training procedure of
the spatial attention module, a semi-supervised strategy that is different
from the traditional method [38]. Especially, the loss function in the
training procedure of the spatial attention module comes from two
parts: (1) adversarial Loss from the discriminator: The part represents
an unsupervised loss as it does not require labeled data. It tries to make
the distribution of the model’s outputs match the distribution of the
training data and (2) L2 Loss computed with tumor masks: The part
constitutes a supervised loss as it relies on the labeled tumor mask for
the module to learn from. The combination of these supervised and
unsupervised losses is what gives our module its ‘‘semi-supervised’’. We
use mask information to supervise the generation process of positive
samples to negative samples, and the generation process of negative
samples to positive samples without mask supervision information. In
addition, attention-guided discriminators lead to the difficulty of the
model to learn the tissue boundary information of the negative image,
resulting in the difficulty of the model to recover the tissue boundaries
invaded by the tumor when it generates negative samples that do

not contain tumor lesions. Therefore, the spatial attention module and
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Fig. 2. The flowchart of data augmentation in classification.
the generated attention map do not guide the training procedure of
discriminators.

Specifically, as shown in Fig. 1, in the forward processing, the
generated image is a combination of two parts: the foreground from
the generator and the background from the input image. Take the
translation from positive samples to negative samples as an example.
Firstly, the positive image {𝑝𝑖} ∈ 𝑃 is fed into the generator 𝐺𝑁 , which
maps {𝑝𝑖} to the target domain 𝑁 , generating the negative image 𝑛′𝑖 =
𝐺𝑁 (𝑝𝑖). Secondly, the same input {𝑝𝑖} is fed into the attention module
𝐴𝑁 , resulting in the attention map 𝑀𝑝

𝑖 = 𝐴𝑁 (𝑝𝑖). Thirdly, to create
the ‘foreground’ object {𝑛𝑓𝑖 } ∈ 𝑛′𝑖 , we apply 𝑀𝑝

𝑖 to 𝑛′𝑖 via an element-
wise product: {𝑛𝑓𝑖 } = 𝑀𝑝

𝑖 ⊙ 𝑛′𝑖 . Finally, the inverse of attention map
𝑀𝑝′

𝑖 = 1 −𝑀𝑝
𝑖 will be applied to the input image via an element-wise

product as the background. Thus, the mapped image{𝑛𝑜𝑖 } is obtained
by:

𝑛𝑜𝑖 = 𝐺𝐴
𝑁 (𝑝𝑖) = 𝑀𝑝

𝑖 ⊙ 𝑛′𝑖
⏟⏞⏟⏞⏟
Foreground

+𝑀𝑝′
𝑖 ⊙ 𝑝𝑖

⏟⏞⏞⏟⏞⏞⏟
Background

=𝐴𝑁 (𝑝𝑖)⊙𝐺𝑁 (𝑝𝑖) + (1 − 𝐴𝑁 (𝑝𝑖))⊙ 𝑝𝑖

(4)

We only described the mapping function 𝐺𝐴
𝑁 ; the inverse mapping

function 𝐺𝐴
𝑃 is defined similarly:

𝑝𝑜𝑖 = 𝐺𝐴
𝑃 (𝑛𝑖) = 𝑀𝑛

𝑖 ⊙ 𝑝′𝑖
⏟⏞⏟⏞⏟
Foreground

+𝑀𝑛′
𝑖 ⊙ 𝑛𝑖

⏟⏞⏞⏟⏞⏞⏟
Background

=𝐴𝑃 (𝑛𝑖)⊙𝐺𝑃 (𝑛𝑖) + (1 − 𝐴𝑃 (𝑛𝑖))⊙ 𝑛𝑖

(5)

The attention map of 𝑃 → 𝑁 translation is exactly the whole
lesion region. Therefore, we supervised the training process of attention
network 𝐺𝐴

𝑁 by segmentation mask. Given a training set {(𝑝1,𝑀1),… ,
(𝑝𝑘,𝑀𝑘)} of 𝑘 examples, where 𝑀𝑖 is the tumor mask of segmentation
and {𝑝𝑖} ∈ 𝑃 is the given positive image. To reduce changes and
constrain generators, we design pixel loss between the tumor mask 𝑀𝑖
and the generated attention map 𝑀𝑝

𝑖 . We express this loss as:

𝑀 (𝑀𝑖,𝑀
𝑝
𝑖 ) =

‖

‖

‖

𝑀𝑖 −𝑀𝑝
𝑖
‖

‖

‖1
(6)

3.1.3. Spectral normalization
It is well known that the difficulty of training GANs is caused by

the fact that the objective function of vanilla GAN is equivalent to
optimizing the J-S divergence between the distribution 𝑝𝑔 of the gen-
erated data and the distribution 𝑝𝑟 of the real data. Then, WGAN [39]
is proposed to solve the problem of the J-S divergence in the vanilla
GAN with Wasserstein distance. Specifically, the Wasserstein distance
of WGAN can continuously represent the distance of two distributions
6

without intersection and interruption, so it can eliminate the con-
vergence problem in the training process of the original generative
adversarial network and make the training process stable. However, the
implementation of Wasserstein distance is conditional: the parameter
matrix of the discriminator needs to satisfy the 1-Lipschitz continu-
ity, i.e., it achieves the 1-Lipschitz continuity in the whole definition
domain of the function.

To address this problem, Lin et al. [40] propose the spectral nor-
malization that achieves the 1-Lipschitz continuity without destroying
the matrix structure. Specifically, they implement the 1-Lipschitz con-
tinuity constraint by dividing the network parameters of each layer
of the network by the spectral norm of that layer’s parameter matrix.
The spectral normalization method makes the discriminator achieve
the 1-Lipschitz continuity in a way without destroying the propor-
tionality between the parameters and allowing the model to express
the distribution distance between the generated and real images in
Wasserstein distance. We apply spectral normalization to the image-
to-image generation, which brings a more elegant way to prevent the
discriminator from mode collapse and stabilize the training procedure.

3.1.4. Objective functions
I. Attention-guided Adversarial Loss. The attention-guided ad-

versarial loss is proposed to train the attention-guided generators and
discriminators. We update the adversarial loss:

𝑃
𝐺𝐴𝑁 (𝐺𝐴

𝑃 , 𝐷𝑃 , 𝑃 ,𝑁) = E𝑝∼𝑝data(𝑃 )
[

log𝐷𝑃 (𝑀𝑛, 𝑝)
]

+E𝑛∼𝑝data(𝑁)
[

log(1 −𝐷𝑃 (𝑀𝑝, 𝐺𝐴
𝑃 (𝑛)))

] (7)

where 𝐺𝐴
𝑃 aims to translate the negative image to the positive image

and maximize the probability that the discriminator makes a mis-
take, while 𝐷𝑃 is trained to distinguish between the generated posi-
tive images and its corresponding attention mask in generation pro-
duce (𝑀𝑝, 𝑝𝑜) with real positive images and its attention mask (𝑀𝑛, 𝑝).
This means 𝐺𝐴

𝑃 tries to minimize the attention-guided adversarial loss
𝑃
𝐺𝐴𝑁 (𝐺𝐴

𝑃 , 𝐷𝑃 , 𝑃 ,𝑁), while 𝐷𝑃 tries to maximize it. There are also
another loss for the discriminator 𝐷𝑁 and the generator 𝐺𝐴

𝑁 update:

𝑁
𝐺𝐴𝑁 (𝐺𝐴

𝑁 , 𝐷𝑁 , 𝑁, 𝑃 ) = E𝑛∼𝑝data(𝑁)
[

log𝐷𝑁 (𝑀𝑝, 𝑛)
]

+E𝑝∼𝑝data(𝑃 )
[

log(1 −𝐷𝑁 (𝑀𝑛, 𝐺𝐴
𝑁 (𝑝)))

] (8)

II. Pixel-level Attention Loss. The pixel-level attention loss is used
to reduce the difference between the region of interest 𝑀𝑖 and the
generated attention map 𝑀𝑝

𝑖 . The above-mentioned adversarial loss
and pixel-wise loss jointly optimize the spatial attention mechanism.
Pixel-wise loss narrows the convergence space of the attention network,
forcing the attention map to converge to the region of interest, while
the adversarial loss brings uncertainty to the attention map generated
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Fig. 3. The flowchart of data augmentation in segmentation.
by the model so that the attention map converges to the part that the
discriminator cares about, preventing overfitting problems that may be
caused by pixel-wise loss.

Thus, the loss function of Pixel-level Attention Loss is defined as:

𝑀 (𝑀𝑖,𝑀
𝑝
𝑖 ) =

‖

‖

‖

𝑀𝑖 −𝑀𝑝
𝑖
‖

‖

‖1
(9)

III. Cycle-consistency Loss. The cycle-consistency loss is used to
enforce forward and backward consistency. Thus, the loss function of
cycle-consistency is defined as:

𝑐𝑦𝑐𝑙𝑒(𝐺𝐴
𝑃 , 𝐺

𝐴
𝑁 , 𝑁, 𝑃 ) = E𝑛∼𝑝data(𝑁)

[

‖

‖

‖

𝐺𝐴
𝑁 (𝐺𝐴

𝑃 (𝑛)) − 𝑛‖‖
‖1

]

+E𝑝∼𝑝data(𝑃 )

[

‖

‖

‖

𝐺𝐴
𝑃 (𝐺

𝐴
𝑁 (𝑝)) − 𝑝‖‖

‖1

] (10)

In Algorithm 1, we introduce a data augmentation method named
Cross-Domain Attention-Guided GAN (CDA-GAN). This method is specif-
ically designed for image translation between a source domain dataset
𝑋 and a target domain dataset 𝑌 , thus effectively executing data
augmentation. The algorithm primarily consists of two key components:
the Attention-based Generator (𝐺𝐴) and the Discriminator (𝐷). During
each training iteration, we randomly sample mini-batches from the
source domain dataset 𝑋 and the target domain dataset 𝑌 . Subse-
quently, we perform the generator update step, mapping the source
domain data 𝑋 to the target domain 𝑌 , and compute a cycle consistency
loss to ensure image consistency. We also introduce a pixel-level
attention loss to enhance the generator’s performance. Simultaneously,
we update the discriminator by computing the discriminator loss and
training it to differentiate between real target domain data and data
generated by the generator. Weight parameters in the loss function,
denoted as 𝜆cycle, and 𝜆M, are used to control the importance of differ-
ent loss terms. By iteratively executing the generator and discriminator
update steps, we eventually achieve the training of the generator 𝐺𝐴
and the discriminator 𝐷, enabling them to map source domain images
to the target domain and generate high-quality results.

This algorithm finds widespread applications in domain adaptation
and image translation tasks, effectively addressing image translation
challenges across different domains.

3.2. Information enhancement strategy for medical image analyze

For medical imaging tumor diagnosis task flow is shown in Fig. 2.
In the data augmentation stage, all positive samples containing tumor
lesions used for training are input to the generator 𝐺𝑁 to generate
negative samples, and all negative samples are input to the generator
𝐺𝑃 to generate positive samples.

Firstly, in the stage of tumor classification, the combination of
synthetic samples with real samples is used to train the classification
model. Our proposed inter-class cross-domain translation model inputs
positive images to the generator 𝐺 and outputs the same number of
7

𝑁

Algorithm 1 CDA-GAN Training
Description: Training the CDA-GAN model to map from source do-
main 𝑋 to target domain 𝑌 while maintaining cycle consistency and
pixel-level attention.
Input:

• 𝑋: Source domain dataset;
• 𝑌 : Target domain dataset;
• 𝐺𝐴: Generator mapping function from 𝑋 to 𝑌 ;
• 𝐴: Attention-based mapping function from 𝑋 to 𝑀 ;
• 𝑀 : Attention map of Generator 𝐴;
• �̂� : Segmentation mask;
• Loss function weights 𝜆cycle, 𝜆M;
• Number of training iterations 𝑁 .

Output: Trained generator 𝐺𝐴 and discriminator 𝐷.
1: for 𝑛 in 1 to 𝑁 do
2: Randomly sample minibatches 𝑥 and 𝑦 from source domain

dataset 𝑋 and target domain dataset 𝑌 .
3: Generator Update:
4: Compute generator’s generated outputs �̂� = 𝐺𝐴(𝑥) and �̂� =

𝐺𝐴(𝑦).
5: Compute cycle consistency loss:
6: cycle = ‖

‖

𝑥 − 𝐺𝐴(�̂�)‖‖1 + ‖

‖

𝑦 − 𝐺𝐴(�̂�)‖‖1.
7: Compute pixel-level attention loss (from positive samples to

negative samples):
8: Compute attention-based generator’s generated attention map

𝑀 = 𝐴(𝑥) and 𝑀 ′ = 𝐴(𝑦).
9: M = ‖

‖

‖

𝑀 − �̂�‖

‖

‖1
.

10: Compute total generator loss:
11: 𝐺𝐴

= cycle + 𝜆MM.
12: Update generator parameters using Adam optimizer:
13: 𝜃𝐺𝐴

← 𝜃𝐺𝐴
− Adam(∇𝜃𝐺𝐴

𝐺𝐴
).

14: Discriminator Update:
15: Compute discriminator loss:
16: 𝐷 = − log(𝐷(𝑦)) − log(1 −𝐷(�̂�)) − log(𝐷(𝑥)) − log(1 −𝐷(�̂�)).
17: Update discriminator parameters using Adam optimizer:
18: 𝜃𝐷 ← 𝜃𝐷 − Adam(∇𝜃𝐷𝐷).
19: end for

corresponding negative images. Meanwhile, inputting negative images
to the generator 𝐺𝑃 will output the same number of corresponding
positive images. With an equal number of each class, CDA-GAN doubles
the original training dataset for the classification task and balances the
number of classes. Finally, we select the model parameters with optimal
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Algorithm 2 Classification Task Data Augmentation Flow
Input: Positive samples with tumor lesions 𝑋p, Negative samples 𝑋n,

Generator 𝐺𝑁 , Generator 𝐺𝑃 , Classification Model 𝑀
1: Initialize empty dataset 𝑋aug
2: for 𝑥 ∈ 𝑋p do
3: Generate corresponding negative sample �̂� = 𝐺𝑁 (𝑥)
4: Add (𝑥, 1) and (�̂�, 0) to 𝑋aug
5: end for
6: for 𝑥 ∈ 𝑋n do
7: Generate corresponding positive sample �̂� = 𝐺𝑃 (𝑥)
8: Add (𝑥, 0) and (�̂�, 1) to 𝑋aug
9: end for

10: Train classification model 𝑀 on 𝑋aug
return Trained classification model 𝑀

Algorithm 3 Segmentation Task Information Enhancement Flow
Input: Positive samples with tumor lesions 𝑋p, Negative samples 𝑋n,

Cross-Domain GAN-based Generator 𝐺𝑁 , Segmentation Model 𝑆
1: Initialize empty dataset 𝑋e
2: for 𝑥 ∈ 𝑋p do
3: Generate corresponding negative sample �̂� = 𝐺𝑁 (𝑥)
4: Obtain coarse mask of tumor area 𝑀coarse = |𝑥 − �̂�|
5: Add (𝑥,𝑀coarse) and annotated tumor mask to 𝑋e
6: end for
7: for 𝑥 ∈ 𝑋n do
8: Create a zero vector 𝑀zero of the same size as 𝑥
9: Add (𝑥,𝑀zero) and annotated tumor mask to 𝑋e

10: end for
return Train segmentation model 𝑆 on 𝑋e

evaluation metrics by the validation dataset and obtain the final clas-
sification results in the test dataset. The specific process is described in
Algorithm 2. Specifically, in this data augmentation pipeline for clas-
sification tasks, we use a two-step process: data generation and model
tasks. First, in the data generation stage, we use a generator named
𝐺𝑁 to convert positive samples (samples containing tumor lesions) into
orresponding negative samples. At the same time, we use another
enerator 𝐺𝑃 to convert negative samples into corresponding positive

samples. Next, we create an empty dataset 𝑋aug to store the generated
sample pairs. For each positive sample 𝑥, we generate a corresponding
negative sample �̂� = 𝐺𝑁 (𝑥), and combine (𝑥, 1) and (�̂�, 0) is added to
𝑋aug, where 1 represents a positive sample and 0 represents a negative
sample. For each negative sample 𝑥, we generate a corresponding
positive sample �̂� = 𝐺𝑃 (𝑥), and combine (𝑥, 0) and (�̂�, 1) is added
to 𝑋aug. Finally, we use the data on 𝑋aug to train the classification
model 𝑀 . This model will utilize the generated samples to improve its
performance. After training, we get the trained classification model 𝑀 .
This algorithmic process makes full use of data augmentation methods
to improve the performance of classification tasks by generating sample
pairs related to the original data.

Secondly, in the process of tumor treatment, precise segmentation of
lesions is required, and information enhancement of the segmentation
task is shown in Fig. 3. At the training stage, the segmentation model
can be divided into two parts. The first stage is to train the cross-
domain GANs-based generation model. The second stage is to train
the segmentation model. Initially, we input all positive samples into
the positive-to-negative generator from the trained cross-domain GANs-
based generation model to generate negative samples. By subtracting
the generated negative samples from the input ones at the pixel level,
we obtain a coarse mask of the tumor area. We then input both the
generated masks and the original slices into the segmentation model
8

and use the human-annotated tumor mask as the label. We believe this
strategy can reduce the difficulty of the segmentation task, thus yield-
ing better segmentation results. The training process of the information
enhancement strategy applied in the segmentation task is shown in the
Algorithm 3. In this information augmentation pipeline, we aim to im-
prove the performance of image segmentation models, especially in the
task of tumor segmentation in medical images. We have a set of positive
sample images 𝑋p and negative sample images 𝑋n with tumor lesions, a
cross-domain generator named 𝐺𝑁 , and a Segmentation model 𝑆. First,
we create an empty dataset 𝑋e, which will be used to store information-
enhanced samples. Then, we iterate over each image 𝑥 in the positive
sample set 𝑋p. For each positive sample 𝑥, we use the generator 𝐺𝑁 to
generate a corresponding negative sample �̂�. Next, we calculate a coarse
mask 𝑀coarse of the tumor area, where 𝑀coarse = |𝑥 − �̂�|. Then, we
concat 𝑥 and 𝑀coarse on the channel and add them to the information
augmentation dataset 𝑋e together with the annotated tumor mask.
Next, we iterate over each image 𝑥 in the negative sample set 𝑋n. For
each negative sample 𝑥, we create a zero vector 𝑀zero with the same
size as 𝑥. Then, we concat 𝑥 and 𝑀zero on the channel and add them to
the information augmentation dataset 𝑋e together with the annotated
tumor mask. Finally, we return the trained segmentation model 𝑆,
which was trained using the information-augmented dataset 𝑋e. In the
testing stage, there is no category label for the testing dataset. Luckily,
there is a loss function called identity loss in the Improved CycleGAN
model. The loss is proposed to force the generator to learn the category
information in the input image. If a negative image feeds into the
positive-to-negative generator, which should feed the positive image,
the generator will output an image that is similar to the input image.
Therefore, in the testing stage, all the images will feed into the positive-
to-negative generator. As the same, the trained segmentation model
will take two inputs: the original image and the pixel-wise difference
between the original image and the corresponding synthetic image,
and output the segmentation results. For medical image analysis, the
process of information enhancement is similar to the segmentation task,
where the pixel-level difference is used as a rough detection map to
train the segmentation model. In addition to the segmentation task,
the classification task can also be used with the two-stage method as
described above.

4. Datasets and experiments

4.1. Datasets and pre-processing

To evaluate the performances of our proposed CDA-GAN and in-
formation enhancement strategy in brain tumor classification and seg-
mentation tasks, we conduct extensive experiments on two different
magnetic resonance imaging (MRI) brain tumor datasets (BraTS 20201

and TCIA2). Please note that although only brain tumor MR images
are used here, CDA-GAN is a generic method that can be adapted to
other types of medical images, such as CT scans, ultrasound images,
and gastrointestinal endoscopy images.

BraTS 2020, as a public real-world multimodal magnetic resonance
imaging (MRI) dataset provided by Mehta et al. [41], aims to segment
the glioma tumor. This dataset has two types of brain tumor data,
namely high-grade glioblastoma (HGG) and low-grade glioma (LGG).
The MRI of each sample contains four modalities: fluid attenuation
inversion recovery (FLAIR), T1 weighting (T1), T1-weighted contrast-
enhanced (T1-CE), and T2 weighting (T2). The ground truth masks are
tagged by expert board-certified neuroradiologists. To further verify
the model’s effect with different sample magnitudes, we divided the
public dataset into two different datasets (𝐵𝑟𝑎𝑇𝑆 and 𝐵𝑟𝑎𝑇𝑆𝑆 ). The
details of the division will be shown later in this subsection. The Cancer
Imaging Archive (TCIA) contains brain MR images and manual anomaly

1 https://www.med.upenn.edu/cbica/brats-2020/
2 https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation

https://www.med.upenn.edu/cbica/brats-2020/
https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation


Computers in Biology and Medicine 168 (2024) 107744Z. Xu et al.

t
d
t

t
e
2

4

t
p
R
e
e
f

Table 1
The information of three public datasets.

Datasets Training set Validation set Testing set

Positive Negative Positive Negative Positive Negative

BraTS 6645 11 913 1016 1729 1972 3418
BraTS𝑆 897 1448 132 215 1972 3418
TCIA 998 1888 94 230 281 438

Datasets are divided by patients rather than the number of slices.

segmentation masks of 110 patients. Among them, the brain MR images
were low-grade glioma (LGG) with fluid-attenuated inversion recovery
(FLAIR) sequence imaging. The patient’s brain MR images are 2D slices
ranging in number from 20 to 88. The statistical information about
datasets is shown in Table 1.

BraTS: There are 322 cases in the Brats 2020. We chose HGG
samples as our experimental dataset, which is 20% of all cases are
assigned as the testing data, and 10% of all the cases are assigned
as the validation data. Besides, for each patient sample, there are
four 3D volumes with different modalities and ground truth of brain
tumors corresponding to them. For data preprocessing, each 3D MRI
volume with 240*240*155 sizes is sliced into 155 2D slices. Since each
case has four modal MR images, four modal images for each slice are
concatenated into four-channel data with 240*240 size. Due to the poor
image quality of the first 30 slices and the last 30 slices, we choose the
middle slices between 30 to 125.

𝐁𝐫𝐚𝐓𝐒𝑆 : A subset of BraTS to verify the performance of the pro-
posed data augmentation scheme with limited data. The amount of the
BraTS𝑆 dataset is one-eighth of the training and validation amount of
he BraTS dataset. To fairly evaluate the performance of the model on
ifferent scales of the same dataset, our testing set is consistent with
he BraTS dataset. For data preprocessing, BraTS𝑆 and BraTS have the

same data pre-processing method.
TCIA: The TCIA dataset contains 110 LGG cases, and the MRI images

in the dataset are sliced 256*256 2D images. The number of slices per
patient varies between 20 and 88. We choose 20% of all cases as the
esting data and 10% of all the cases as the validation data. Besides, for
ach patient sample, images for each slice are one-channel data with
56*256 size.

.2. Evaluation metrics

We demonstrate the effectiveness of cross-domain data augmenta-
ion solutions for medical image classification tasks. The classification
erformance is evaluated by two metrics, classification accuracy (ACC),
ecall, F1 score (F1), and area under the curve (AUC). Then, we
laborate on the meaning and function of each metric and follow the
quations in detail. The equation of ACC, Rec, and F1 are calculated as
ollows:

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (11)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (12)

𝐹1 = 2 ∗ 𝑇𝑃
𝑇 + 𝑃

, (13)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 are the number of true positive points,
true negative points, false positive points, and false negative points, re-
spectively. 𝑇 is the number of ground truth points of that class, and 𝑃 is
the number of predicted positive points. Accuracy measures the number
of correctly predicted samples (both true positives and true negatives)
as a percentage of the total number of samples. The performance of
the classification is evaluated with TP, TN, FP, and FN, describing
the number of samples predicted correctly. Recall has evaluated the
probability that positive samples are correctly classified as positive.
F1 score is the harmonic mean of Precision and Recall, which thus
can evaluate the model’s performances more comprehensively from the
perspectives of both Precision and Recall.
9

The equation of AUC is defined as:

𝐴𝑈𝐶 =

∑

i∈positiveclass ranki −
𝑀×(𝑀+1)

2
𝑀 ×𝑁

(14)

AUC is defined as the area under the ROC curve enclosed by the
coordinate axes. To calculate AUC, we need to sort the output of the
classification model from largest to smallest. Then, the rank of the
largest output sample is 𝑛, the rank of the second largest output sample
is 𝑛-1, and so on. Then we add the rankings of the entire positive
samples and subtract the 𝑀-1 combination of the two positive samples.
The final result is to output the number of positive class samples that
is greater than the number of negative class samples and then divide
by 𝑀 ×𝑁 .

To evaluate the segmentation performances of our proposed cross-
domain data augmentation solutions for medical image segmentation
tasks, two widely used segmentation evaluation metrics, sensitivity
(Sens), dice similarity coefficient (Dice), mean intersection over union
(mIoU) and 95% Hausdorff Distance (HD95) are adopted. The formal
definitions of Dice and Sens are as follows:

𝑆𝑒𝑛𝑠 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(15)

Sensitivity, also known as Recall, is the proportion of positive pixels
that are correctly segmented to all the pixels that are annotated as
positive in the ground truths.

𝐷𝑖𝑐𝑒 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

. (16)

The Dice Similarity Coefficient is a statistical measure utilized to
evaluate the similarity between two samples. The terms True Positive
(TP), False Positive (FP), and False Negative (FN) retain their standard
meanings within this context. However, in the case of segmentation
tasks, these metrics are computed in relation to the real and predicted
mask regions.

𝑚𝐼𝑜𝑈 = 1
𝑛

𝑛
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(17)

Where 𝑛 represents the number of categories, 𝑇𝑃𝑖 represents the
number of pixels correctly classified as positive samples in the 𝑖𝑡ℎ
category, 𝐹𝑃𝑖 represents the number of pixels misclassified as positive
samples in the 𝑖𝑡ℎ category, and 𝐹𝑁𝑖 represents the misclassified pixels
in the 𝑖𝑡ℎ category. It measures the ratio of the intersection area
between the predicted segmentation mask and the ground truth mask
to the union area of the two masks across all classes.

𝐻𝐷95 = 𝑚𝑎𝑥𝑘95%[𝑑(𝑃 ,𝐺), 𝑑(𝐺, 𝑃 )], (18)

𝑑(𝑃 ,𝐺) =
∑

𝑝∈𝑃
𝑚𝑖𝑛𝑔∈𝐺𝑑(𝑝, 𝑔), (19)

𝑑(𝐺, 𝑃 ) =
∑

𝑔∈𝐺
𝑚𝑖𝑛𝑝∈𝑃 𝑑(𝑔, 𝑝) (20)

Where 𝐺 represents the real label, and 𝑃 represents the segmen-
tation result. Hausdorff Distance 95%, is a metric used to evaluate the
boundary accuracy of a segmentation model. It measures the maximum
distance between the predicted segmentation boundary and the ground
truth boundary for which 95% of the distances are smaller or equal to
the measured value.

4.3. Implementation details

All models are implemented using PyTorch and conducted over a
server equipped with 8 Nvidia GeForce 2080 Ti GPUs. Each graphics
card has 11019M of memory, and the server has an Intel(R) Xeon(R)
Silver 4110 CPU with 2.10 GHz and 16G of RAM. In terms of software
configuration, the CUDA version of the server is 10.2, and all the code
is implemented in Python language, based on the PyTorch framework.
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Table 2
Comparison with the state-of-the-art GAN-based data augmentation in the classification task, where 𝑂-𝑠 represents oversampling in traditional data enhancement, and 𝑈 -𝑠 represents
undersampling in traditional data enhancement.

Methods BraTS BraTS𝑆 TCIA

ACC AUC Recall F1 ACC AUC Recall F1 ACC AUC Recall F1

w/o DA 0.9081 0.9158 0.8839 0.9052 0.8243 0.8339 0.7942 0.8489 0.9221 0.9131 0.8719 0.8974

O-s 0.9194 0.9282 0.8867 0.9134 0.8313 0.8389 0.8076 0.8561 0.9248 0.9192 0.8732 0.9029
U-s 0.9208 0.9213 0.8891 0.9175 0.8419 0.8451 0.8319 0.8674 0.9249 0.9160 0.8754 0.9011
Mixup [43] 0.9345 0.9369 0.8921 0.9194 0.8438 0.8476 0.8625 0.8769 0.9263 0.9197 0.8897 0.9042
CutMix [44] 0.9268 0.9402 0.8803 0.9256 0.8431 0.8321 0.8457 0.8652 0.9235 0.9245 0.8818 0.9047
CutOut [45] 0.9328 0.9329 0.8868 0.9137 0.8346 0.8309 0.8258 0.8547 0.9266 0.9054 0.9066 0.8989

PGGAN [19,20] 0.9336 0.9427 0.8909 0.9215 0.8440 0.8334 0.8771 0.8749 0.9249 0.9173 0.8826 0.9018
MSG-GAN [21] 0.9354 0.9468 0.8915 0.9266 0.8487 0.8546 0.8302 0.8721 0.9291 0.9201 0.8790 0.9064

CycleGAN [24] 0.9404 0.9512 0.8970 0.9256 0.8500 0.8422 0.8744 0.8787 0.9332 0.9242 0.8826 0.9118
UAGGAN [12,13] 0.9433 0.9515 0.8953 0.9311 0.8672 0.8603 0.8787 0.8927 0.9471 0.9375 0.8932 0.9296
AGGAN [14,15] 0.9486 0.9527 0.9021 0.9391 0.8577 0.8549 0.8661 0.8832 0.9346 0.9304 0.9110 0.9159
CDA-GAN (Ours) 0.9534 0.9691 0.9206 0.9411 0.8755 0.8770 0.8809 0.8969 0.9485 0.9418 0.9120 0.9326
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The main Python libraries involved in the experiments are Numpy (for
matrix operations), PIL, Nibabel (for reading, processing, and saving
medical images), visdom (for tracking and analysis of the experimental
process), and torchvision (a PyTorch-related image processing library).
We adopt the Adam algorithm to optimize the networks. For generating
tasks, the learning rate is initialized to 1e-4, and after 100 epochs,
the learning rate starts decaying to zero linearly. For classification
tasks, the learning rate is initialized to 5e-4, followed by decreasing
he learning rate 2 times every 10 epoch during the training. For
egmentation tasks, the learning rate is initialized to 1e-4, followed by
he warmupCosine learning rate scheduler. Both two tasks are trained
sing the Adam optimizer with a mini-batch size of 2, where the weight
ecay parameter in Adam is set to 1e-4.

.4. The selection of data augmentation baselines

The CDA-GAN model aims to accomplish image generation tasks by
ransforming positive and negative samples. However, the transformed
ositive and negative samples, as a solution for data augmentation, are
ore difficult in technology. Positive and negative sample transforma-

ion is required to determine the presence of tumors at the pixel level
uring the generation process. Therefore, to verify the validity of this
ethod, we compare the data augmentation method with (i) classic

raditional data augmentation methods [16] and (ii) GAN-based data
ugmentation solutions on medical images in single-domain [19–21].
esides, the proposed CDA-GAN is further compared with (iii) several
tate-of-the-art image-to-image translation models in cross-domain [12,
3,24,42].

(i) Traditional data augmentation method: Following the pre-
ious data augmentation method in medical images [16], we use
he traditional data augmentation scheme (e.g., crop, rotation, flip)
ollowed by a sampling-based strategy to cope with datasets.

(ii) Mixup-based data augmentation method: The mixup-based
ata augmentation method is also widely used in medical imaging
asks [46], and we process datasets through the Mixup, CutMix, and
utOut data augmentation methods.

(iii) GAN-based data augmentation methods on medical images:
GGAN [19,20] is the first model introducing a progressive growth
trategy to break the limitation in the resolution of GANs-based image
eneration tasks. Similar to PGGAN, MSG-GAN [21], which proposed
different growth strategy to reach high-resolution synthetic images,

s the latest method state-of-the-art in image generation. In this exper-
mental study, they are trained to generate images on datasets. After
hat, the synthetic samples were combined with the real samples to
rain the classification model.

(iv) Unpaired image-to-image translation state-of-the-art meth-
ds: Unsupervised image translation is more and more popular inspired
10

y recent progress in GANs. AGGAN [14,15] is the latest state-of-the-art t
n attention-guided image-to-image translation. We also compare with
everal known translation models, CycleGAN [24], which introduces
he cycle consistency to the unpaired image translation for the first
ime, and UAG-GAN [12,13], which first introduces the spatial atten-
ion mechanism into cycle-consistence, loss-based models. We combine
he above translation models with the proposed data augmentation
cheme to improve the performance of subsequent medical image
nalysis tasks. Specifically, the above translation models are trained to
odel the translation link between classes, and then, the training data

s fed into translation models to generate images. Finally, the synthetic
mages are combined with original training data to train the medical
mage analysis tasks.

. Results

In this section, we conduct extensive experiments to investigate the
erformance of the CDA-GAN model across a range of datasets, module
rchitectures, and tasks. Firstly, we compare our proposed CDA-GAN
edical image generation method with several state-of-the-art data

ugmentation methods in the brain tumor classification tasks. Then,
e further validate the performance of the important components in
ur model, including the AMSE module, the semi-supervised spatial
ttention module, and the spectral normalization in discriminators.
urther, we experimented with and analyzed the impact of the ratio
f synthetic to original images in the training data on the medical
mage classification task. Finally, we validate the performance of the
roposed data augmentation strategy on a small dataset with few
ositive samples in classification tasks, which is common in real-world
edical practice.

.1. Data augmentation methods in classification

In this group of experiments, we compare the proposed cross-
omain medical image generation scheme with several state-of-the-
rt GANs-based data augmentation schemes for the medical image
lassification task in Section 3.2.

The classification results show that the CDA-GAN achieved the best
erformance. The finding observations are in Fig. 4 and Table 2: (i)
ll data augmentation methods show better classification results than
odels trained without data augmentation methods, proving that data

ugmentation plays a key role in modeling feature distributions. (ii)
ixup-based data augmentation methods are superior to traditional

ata augmentation methods. Mixup-based can improve data diversity,
itigate overfitting, and enhance the robustness of the model by in-

roducing sample blending to improve the generalization ability of
he model. (iii) GANs-based data augmentation solutions outperform
raditional data augmentation solutions and obtain relatively more
dditional information gained from the training set. It proves that tradi-

ional data augmentation obtains little additional information limiting
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Fig. 4. The synthetic images of positive and negative samples in different methods. The red box indicates the obvious tumor area, the yellow box indicates the incomplete area
of tumor generation, and the green box indicates the area where the brain tissue was over-modified except the tumor during the generation process.
the improvement of the model and GANs improving the scale of data
feature distributions learned by the classifier from the dataset. (iv)
Focusing on the results from 𝐵𝑟𝑎𝑇𝑆 to 𝐵𝑟𝑎𝑇𝑆𝑆 and 𝑇𝐶𝐼𝐴, in the
ACC and AUC of classification results, traditional sampling-based data
augmentation methods are lower than GAN-based data augmentation
methods, which indicates the fragility of traditional methods when
encountering small datasets. However, GANs-based models show ad-
vantages on small datasets. (v) The cross-domain GANs-based models
have competitive performance compared with single-domain GANs-
based models, representing that our proposed cross-domain medical
image generation scheme can generate images with more diverse and
obvious distinctions between classes, further improving performance on
subsequent classification tasks.

From the synthetic image of the cross-domain translation model
in Fig. 4, we can find several obvious conclusions: (i) Mixup-based
data augmentation methods are suitable for pixel-level labeling tasks
(segmentation tasks). However, compared with the information aug-
mentation method based on cross-domain GAN, it cannot produce
an advantage in the amount of effective information, so the overall
data enhancement effect is not as good as that of the cross-domain
GAN-based information augmentation method. (ii) When compared
with cross-domain generative models that effectively preserve and ma-
nipulate relevant features through cycle-consistent loss, single-domain
generative models, such as Progressive Growing of GANs (PGGAN) and
Multi-Scale Gradients GANs (MSG-GAN), often fall short. The images
these single-domain models generate not only fail to ensure the de-
piction of tumor tissue but also significantly alter the inherent charac-
teristics of various tissues impacted by brain tumors. This underscores
11
the superiority of cross-domain models in producing more accurate
and clinically relevant representations. (iii) Beyond the recovery of
tissue structure, the medical images generated by attention-guided
GANs, including models such as UAGGAN, AGGAN, and our proposed
CDA-GAN, exhibit superior performance compared to those built on
CycleGAN. This enhancement in performance underscores the crucial
role that attention mechanisms play in medical image generation tasks.
These models achieve their improved performance by integrating at-
tention mechanisms into the CycleGAN framework. This integration
effectively directs the model’s learning focus towards areas of greater
significance, thereby enhancing the quality of the generated images
and their utility in medical diagnosis. (iv) The proposed Cross-Domain
Attention GAN (CDA-GAN) demonstrates exceptional performance in
maintaining generation stability, even when handling smaller datasets
such as 𝐵𝑟𝑎𝑇𝑆𝑆 and 𝑇𝐶𝐼𝐴. This is a clear advantage over other models,
which may only perform incomplete generation tasks. Specifically,
CDA-GAN is capable of generating tumor foci in negative samples
and eradicating tumors from positive samples, exhibiting its strength
in handling complex medical image generation tasks. While all these
models are attention-guided GANs, the attention mechanism in our
CDA-GAN outperforms the other two (UAGGAN, AGGAN). Firstly, we
have introduced channel attention in addition to spatial attention.
Secondly, we employ a semi-supervised approach by using tumor labels
to guide the training of the attention module. Although AGGAN also
employs supervised loss to guide the training of its attention module,
its supervision applies to the entire image. In contrast, we believe that
the attention mask generated by guiding our attention module is more
inclined to output the tumor part, providing a supervision method more
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Comparison with the state-of-the-art GAN-based data augmentation in the segmentation task.

Methods BraTS BraTS𝑆 TCIA

Dice Sens HD95 mIoU Dice Sens HD95 mIoU Dice Sens HD95 mIoU

w/o DA 0.6787 0.6507 8.5598 0.5762 0.5566 0.5442 15.4252 0.4382 0.6474 0.7234 38.7380 0.5364

Pseudo-label method 0.6729 0.6492 8.7826 0.5715 0.5215 0.5150 19.5641 0.4053 0.5968 0.7670 44.1802 0.4692

Mixup [43] 0.6895 0.6690 8.2624 0.5793 0.5685 0.5848 15.2345 0.4326 0.6650 0.7571 32.1632 0.5436
CutMix [44] 0.6989 0.6834 7.8994 0.5828 0.5668 0.5627 16.7834 0.4387 0.6459 0.7474 43.8078 0.5096
CutOut [45] 0.6969 0.6753 8.0696 0.5762 0.5577 0.5438 16.4386 0.4256 0.6508 0.7738 36.5420 0.5427

CycleGAN [24] 0.6931 0.6651 7.6409 0.5801 0.5661 0.5554 14.5276 0.4492 0.6772 0.7492 35.5067 0.5583
UAGGAN [12,13] 0.6964 0.6717 8.1684 0.5922 0.5921 0.5874 16.1591 0.4730 0.6956 0.8035 38.0205 0.5668
AGGAN [14,15] 0.6991 0.6756 7.3038 0.5852 0.5876 0.5821 19.7026 0.4685 0.6897 0.7843 35.0214 0.5604
CDA-GAN (Ours) 0.7030 0.6866 6.8097 0.5993 0.5941 0.5989 14.0390 0.4760 0.7130 0.8107 29.7807 0.5905
tailored to the requirements of generative tasks. This nuanced approach
allows CDA-GAN to focus more precisely on areas of interest, enhancing
its performance in medical image generation tasks. In summary, we can
find that our proposed CDA-GAN model achieves the best performance
among the whole models on datasets. CDA-GAN is more accomplished
in the task of recovering positive samples. Comparing synthetic positive
images in all models, the CDA-GAN stabilizes the translation process
and achieves successful negative-to-positive translation in as many
cases as possible. However, other models can only achieve incomplete
translation in certain situations.

The results shown in Table 2 can confirm our conclusions in Fig. 4
that GAN-based data augmentation methods are significantly more
effective than traditional data augmentation methods for brain tumor
classification tasks. Meanwhile, the cross-domain generation model has
some improvements compared to the single-domain generation model.
In addition, in cross-domain generation methods, CDA-GAN achieves
the best outcome. Numerically, UAGGAN, AGGAN, and CDA-GAN on
brain tumor classification in three datasets achieve certain improve-
ments, and this is consistent with the performance in the generated
images. This illustrates that although the methods of adding spatial
attention mechanisms are different for each model, the addition of a
spatial attention module is an enhancement to the generation capacity
of the model, which also proves the necessity of adding a spatial
attention module.

In summary, the robustness of translation models in the image
generation procedure plays a crucial role in the subsequent image
analysis task. Our proposed model outperforms other models because
of its stable ability in the image generation task. Meanwhile, CycleGAN
achieves the worst performance among cross-domain models, which
proves that the attention module plays an essential role in our image
generation task.

5.2. Information enhancement methods in segmentation

In this group of experiments, firstly, we validate the performance
of the pseudo-labels method for the segmentation task. Specifically,
we subtract the tumor image generated by the CDA-GAN model from
the original tumor-free image to obtain a pseudo-label for the gen-
erated tumor image. Then, we add the generated tumor images and
their pseudo-labels to the training set and train the model with the
original data. From Table 3, we find that segmentation performance
with generated differences as pseudo-labels is significantly weaker than
that of the base model without pseudo-labels in three datasets. In
particular, when the dataset is smaller (𝐵𝑟𝑎𝑇𝑆𝑆/ 𝑇𝐶𝐼𝐴), the segmen-
ation performance using pseudo-label methods is worse. The reason
or this phenomenon may be that the poor generation effect in small
atasets leads to poorer quality of pseudo-labels, which leads to a sharp
rop in segmentation performance. In Fig. 5, we can also see that the
umor difference is more obvious in the larger dataset (𝐵𝑟𝑎𝑇𝑆), which
lso proves our explanation for the poor segmentation performance of
he pseudo-label method under the small dataset. Secondly, we use
n information enhancement strategy in Section 3.2 and compare the
roposed CDA-GAN model with several state-of-the-art cross-domain
12
image-to-image translation models. The conclusion of the experiment is
as follows: (i) The segmentation results of the cross-domain model are
better than the pseudo-label method. This proves that directly using
the difference image as the segmentation pseudo-label will introduce
a lot of noise, resulting in performance degradation. The information
enhancement strategy is a way to significantly improve segmenta-
tion performance. (ii) UAGGAN, AGGAN, and CDA-GAN outperform
CycleGAN when using an information augmentation strategy. This
is consistent with the performance in the classification task, which
proves that adding attention mechanisms to CycleGAN is beneficial
for medical image generation tasks. At the same time, in Fig. 5, the
aforementioned conclusion can be clearly observed in generated tumor-
free images, difference images, or segmentated tumor regions. The
results also correspond to the experimentally derived tabular data.
(iii) Our proposed CDA-GAN model has state-of-the-art performance
on information-augmented segmentation tasks. In particular, the effect
of model information enhancement is more pronounced on smaller
datasets, both in the table and figure. Especially, as shown in Fig. 5,
it can be seen that the boundary of the brain tumor enhanced by
the information is not clear enough, and in addition to the distinct
tumor tissue, it also contains brain tissue. This is because the pixel-level
generation task based on the attention mechanism is likely to notice
other abnormal regions in non-tumor tissues. However, according to
the segmentation results, this information enhancement strategy can
significantly improve the segmentation accuracy of tumors.

Overall, compared with other state-of-the-art generative models,
the medical images generated by CDA-GAN can not only improve
classification tasks but also achieve remarkable results in pixel-level
segmentation tasks. Specifically, CDA-GAN outperforms PGGAN and
MSG-GAN because it is a cross-domain model that leverages cycle-
consistent loss. This type of loss ensures that our model can maintain
consistent information in the generation, which is a significant advan-
tage when dealing with medical images. When it comes to CycleGAN,
it is the base model for our work. While CycleGAN has made significant
strides in image translation tasks, our proposal furthers its capabilities
by introducing AMSE Block, Semi-supervised Spatial Attention Module
and Spectral Normalization, which have been shown to improve the
performance of generative models in both classification and segmenta-
tion tasks. While UAGGAN uses an attention mechanism similar to ours,
it does not incorporate the same constraints on attention as ours. Our
model incorporates the use of a segmentation label as a prior to guide
the attention module. This strategic use of prior knowledge makes the
attention mechanism in our model more effective and discriminative.
Finally, the difference between AGGAN and CDA-GAN is the attention
constraint strategy. By integrating a segmentation label into our model,
our attention module can be trained more effectively, leading to better
performance in capturing cross-domain features. Our proposed infor-
mation augmentation strategy can further improve the accuracy of the
segmentation task by making full use of the generated images.

5.3. Comparison of the computational costs

In this section, we compare the computational costs of cross-domain
GAN methods, which can enrich the evaluation dimensions of the
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Fig. 5. Input and output of the segmentation task applying the information augmentation strategy. The original image and the different images are combined on the channel as

the input of the segmentation, and this input method is applied to the training, validation, and testing processes.
Table 4
Comparison with the GAN-based data augmentation
methods in training cost, which is measured by the
average time (in hour) spent per epoch.
Methods BraTS BraTS𝑆 TCIA

CycleGAN 0.6774 0.0906 0.0556
UAGGAN 0.6752 0.0834 0.0547
AGGAN 0.7181 0.0869 0.0588
CDA-GAN 0.7932 0.0963 0.0629

CDA-GAN method. Our work involves a two-step process: data gener-
13

ation and model task. During the data generation phase, our proposed
scheme does incur higher computational costs due to the additional
modules and steps involved. However, during the model task phase, our
scheme does not impose any additional computational cost compared
to other schemes. This is because we use the same task model as
other scenarios. Therefore, it is necessary to compare GAN-based data
augmentation methods with additional modules and steps. In addition,
the single-domain GAN method trains corresponding models for posi-
tive samples and negative samples respectively, and the cross-domain
GAN method completes the conversion between positive and negative
samples at one time, the computational cost between them cannot be
directly quantified, we focus is on comparing the computational cost
of cross-domain GAN models associated with our proposed CDA-GAN
method.
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Table 5
Ablation studies in the classification and segmentation tasks.

Classification task

Methods BraTS BraTS𝑆 TCIA

ACC AUC Recall F1 ACC AUC Recall F1 ACC AUC Recall F1

CDA-GAN w/o SE 0.9477 0.9686 0.8777 0.9055 0.8623 0.8542 0.7399 0.7675 0.9443 0.9358 0.8968 0.9265
CDA-GAN w/o SA 0.9447 0.9681 0.8824 0.9083 0.8691 0.8665 0.8774 0.8929 0.9401 0.9299 0.8826 0.9202
CDA-GAN w/o SS 0.9471 0.9688 0.8761 0.9135 0.8626 0.8596 0.8716 0.8874 0.9420 0.9324 0.8968 0.9214
CDA-GAN w/o SN 0.9489 0.9691 0.8835 0.9107 0.8726 0.8729 0.8559 0.8930 0.9444 0.9416 0.9028 0.9288
CDA-GAN (Ours) 0.9534 0.9691 0.9206 0.9411 0.8755 0.8770 0.8809 0.8969 0.9485 0.9418 0.9120 0.9326

Segmentation task

Methods BraTS BraTS𝑆 TCIA

Dice Sens HD95 mIoU Dice Sens HD95 mIoU Dice Sens HD95 mIoU

CDA-GAN w/o SE 0.6927 0.6786 9.3287 0.5886 0.5857 0.5647 15.8306 0.4699 0.6671 0.7701 32.9830 0.5445
CDA-GAN w/o SA 0.6903 0.6769 8.1433 0.5881 0.5686 0.5606 14.5530 0.4548 0.6629 0.7640 32.3488 0.5398
CDA-GAN w/o SS 0.6826 0.6606 9.1328 0.5896 0.5769 0.5784 17.1248 0.4588 0.6733 0.7975 32.7705 0.5478
CDA-GAN w/o SN 0.6895 0.6690 8.0340 0.5857 0.5821 0.5704 14.5375 0.4676 0.6820 0.7600 32.7416 0.5579
CDA-GAN (Ours) 0.7030 0.6866 6.8097 0.5993 0.5941 0.5989 14.0390 0.4760 0.7130 0.8107 29.7807 0.5905
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The computational cost results of the cross-domain GAN method
re in the Table 4. We can obtain the following conclusions: (i) The
ize of the training data significantly affects the training time of each
ethod. For example, the average time spent per epoch in a four-modal,

arge-data-volume dataset like BraTS is much higher than that of a
ingle-modal, small-data-volume dataset like TCIA. (ii) The UAGGAN
ethod has the shortest time among the three datasets. The average

ime per epoch is similar to the CycleGAN method(UAGGAN: 0.6752 h
s CycleGAN: 0.6774 h in BraTS). This also shows that the spatial
ttention method of UAGGAN can achieve better data enhancement
ffects without extra time expenditure. (iii) The computational cost of
he CDA-GAN method we proposed is relatively the largest, but the
odel computational cost does not increase significantly. Secondly,

n the brain tumor classification and segmentation tasks, the data
nhancement effect of CDA-GAN is significantly improved compared
o AGGAN and UAGGAN. We believe that this is the possible price for
chieving better generation quality.

.4. Ablation study

To show the effectiveness and necessity of the proposed advanced
odules, ablation studies are further conducted, where several inter-
ediate models that only use one or two advanced modules are intro-
uced and evaluated. Table 5 summarizes our experiments on applying
blated versions of the CDA-GAN with/without different modules.

.4.1. Effectiveness of channel attention module
As introduced in Section 3.1.1 in the CDA-GAN model, we employ

MSE-residual blocks to capture inter-dependencies between channels.
his design choice is instrumental in enhancing the quality of the image
epresentations generated by our model. By exploiting the inter-channel
ependencies, these blocks allow for a more nuanced understanding of
he input data, thus contributing to the generation of higher-quality,
ore accurate medical images. To evaluate the effectiveness of this
odule, we designed another version (i.e., CDA-GAN w/o SE) of our
roposed model (CDA-GAN) for comparison. In Table 5, the variants
f our proposed model are compared on the task of brain tumor
lassification and segmentation. According to Tables 2 and 5, several
bservations can be found: Firstly, compared with state-of-the-art data
ugmentation methods, the above two models (i.e., CDA-GAN, CDA-
AN w/o SE) lead to competitive performance (e.g, ACC: 0.9477
nd 0.9534, Dice: 0.6927 and 0.7030 in 𝐵𝑟𝑎𝑇𝑆) on both tasks and
he results of our model are the best in the four indicators of the
hree datasets. It reflects the effectiveness of the proposed method.
econdly, our proposed CDA-GAN outperforms CDA-GAN w/o SE on
hree datasets. It indicates that channel-level inter-dependencies are
14

elated to the procedure of modeling feature distribution. e
5.4.2. Effectiveness of semi-supervised spatial attention module
In experiments, we evaluate the effectiveness of the spatial attention

module as well as the semi-supervised strategy. Specifically, we per-
form two variants of our model (i.e. CDA-GAN w/o SA, CDA-GAN w/o
SS). First, we compare the CDA-GAN model with the CDA-GAN model
without the spatial attention module and semi-supervised training strat-
egy (CDA-GAN w/o SA). Second, we compare the CDA-GAN model
with a CDA-GAN model without a semi-supervised training strategy
(CDA-GAN w/o SS).

The experimental results of classification and segmentation are
presented in Table 5. From the results we can analyze the following
conclusions: (i) Our proposed CDA-GAN outperforms CDA-GAN w/o SA
and CDA-GAN w/o SS in each dataset, e.g., in the 𝐵𝑟𝑎𝑇𝑆𝑆 , the ACC
for tumor classification is 𝟎.𝟖𝟕𝟓𝟓 versus 0.8691 versus 0.8626, and the

ice for tumor segmentation is 𝟎.𝟓𝟗𝟒𝟏 versus 0.5686 versus 0.5769. It
ndicates that spatial attention can force the generator to translate rel-
vant regions, which improves the robustness of the image generation
rocedure. This proves that both semi-supervised methods and spatial
ttention can improve the generator’s acquisition of lesion features,
eliably generate positive and negative samples, and perform effective
ata enhancement in downstream medical image analysis tasks. (ii)
he results of CDA-GAN w/o SA are mostly lower than those of CDA-
AN w/o SS on classification and segmentation tasks. This finding

llustrates that the application of spatial attention can effectively guide
he generator to focus on translating relevant regions, thus improving
he robustness of the image generation process. Therefore, the proposed
emi-supervised strategy is essential in our model.

.4.3. Effectiveness of spectral normalization for stable training procedure
As introduced in Section 3.1.3, we used the spectral normaliza-

ion [40] in discriminators to constrain the Lipschitz constant. This
mprovement prevents the proposed CDA-GAN from mode collapse
nd stabilizes the training procedure. In this group of experiments,
e aim to evaluate the performance of the spectral normalization

SN) module for the data augmentation task. We perform a variant
f the CDA-GAN (i.e., CDA-GAN w/o SN). The results presented in
able 5, we find that all metrics in classification and segmentation
or three datasets have improvements by restricting spectral norm to
ach layer of discriminators. It indicates that the proposed CDA-GAN
tabilizes the training process by introducing spectral normalization
nd improves the classification and segmentation performance with a
mall computational cost.

.5. Different attention-based blocks in cross-domain GAN

Although the above ablation studies have proved the necessity and

ffectiveness of the components in attention modules. In this subsec-
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Table 6
The performances on datasets with different attention blocks of CDA-GAN.

Methods BraTS BraTS𝑆 TCIA

ACC AUC Recall F1 ACC AUC Recall F1 ACC AUC Recall F1

CycleGAN+SE 0.9402 0.9428 0.8996 0.9348 0.8563 0.8608 0.8724 0.8692 0.9375 0.9305 0.8970 0.9147
CycleGAN+CABM 0.9469 0.9526 0.9087 0.9324 0.8732 0.8685 0.8706 0.8757 0.9338 0.9358 0.9036 0.9317
CDA-GAN(AMSE) 0.9534 0.9691 0.9206 0.9411 0.8755 0.8770 0.8809 0.8969 0.9485 0.9418 0.9120 0.9326

Methods Dice Sens HD95 mIoU Dice Sens HD95 mIoU Dice Sens HD95 mIoU

CycleGAN+SE 0.6935 0.6783 7.0997 0.5890 0.5796 0.5760 44.1802 0.4692 0.6753 0.7925 33.6505 0.5421
CycleGAN+CABM 0.6944 0.6821 6.8134 0.5905 0.5828 0.5759 41.0231 0.4756 0.6803 0.7526 32.7346 0.5575
CDA-GAN(AMSE) 0.7030 0.6866 6.8097 0.5993 0.5941 0.5989 14.0390 0.4760 0.7130 0.8107 29.7807 0.5905
Table 7
The performances on datasets with different amounts of synthetic samples.

Ratios BraTS BraTS𝑆 TCIA

ACC AUC Recall F1 ACC AUC Recall F1 ACC AUC Recall F1

20% 0.9215 0.9320 0.8935 0.9261 0.8504 0.8554 0.8350 0.8740 0.9263 0.9197 0.8897 0.9042
40% 0.9256 0.9399 0.8976 0.9298 0.8509 0.8487 0.8576 0.8773 0.9305 0.9244 0.8968 0.9097
60% 0.9324 0.9456 0.9148 0.9317 0.8645 0.8658 0.8603 0.8875 0.9346 0.9259 0.8861 0.9138
80% 0.9487 0.9497 0.9157 0.9358 0.8726 0.8729 0.8559 0.8930 0.9332 0.9280 0.9039 0.9208
100% 0.9534 0.9691 0.9206 0.9411 0.8755 0.8770 0.8809 0.8969 0.9485 0.9418 0.9120 0.9326
tion, we further compare the proposed CDA-GAN with two similar
models, CycleGAN+SE and CycleGAN+CABM, to show that AMSE with
the Semi-supervised Attention Module is a better attention choice than
the existing SOTA attention baselines, e.g., SE and CABM, in the
medical image argumentation tasks.

We can obtain the following conclusions from the results in Ta-
ble 6: (i) In the classification and segmentation task, the results of the
CABM module are mostly better than those of the SE module. This
shows that the combined action of channels and spaces in the data
enhancement method based on cross-domain GAN can better capture
image features and further improve the data augmentation effect. (ii)
Compared with the SE block and CBAM block, the attention block
we proposed has significant improvements in both classification and
segmentation tasks. The attention block in the CDA-GAN method of
separating the two types of attention, channel attention and spatial
attention, allows for more flexibility and specificity in the learning
process of the model. In addition, the AMSE residue block combines
average and maximum pooling features and can capture more global
and local attention features than the SE block.

5.6. Influence of the amount of synthetic samples

In this group of experiments, we conduct experiments to verify the
value of generated images. 20%, 40%, 60%, and 80% of the generated
samples were mixed into the real samples, and then, four classification
models were trained with four combined datasets, respectively. How-
ever, in the segmentation task, we found that training UNet according
to the percentage of added information enhancement does not enable
positive samples to obtain corresponding augmentation information but
degrades the segmentation results. This indicates that the information
enhancement strategy is for the entire data and cannot be augmented
by percentage. Table 7 showed the classification results with four
datasets. The results show that the classification performance of the
model steadily improves as the number of generated samples increases.
This demonstrated that our proposed model could increase the feature
space uncovered by original data, provide extra feature information to
the combined datasets, and serve as additional information to enhance
the capability of classification and segmentation.

5.7. Performances of CDA-GAN in extremely imbalanced small dataset

In the clinic, abnormal findings of disease are rare, especially in
brain tumors, so training models on small datasets with extreme class
15

imbalances are common in real-world medical practice. To verify the
capability of the proposed model in coping with the real-world sit-
uation, we collected a small dataset with only 70 positive samples
and 730 negative samples randomly chosen from the 𝐵𝑟𝑎𝑇𝑆 dataset.
In imbalanced small datasets, the classification performance of data
augmentation models is shown in Fig. 6. We can obtain from this
analysis that the CDA-GAN outperforms other models, which proves
the stability of our model in dealing with extremely unbalanced small
datasets and in the face of real-world medical practice situations. The
single-domain GANs (PGGAN and MSG-GAN) are unable to model the
feature distributions when dealing with a small dataset, thus failing
to generate meaningful new data. This demonstrates their fragility in
augmenting small datasets. Comparing the results of CycleGAN with
attention-guided UAGGAN and AGGAN shows that in the face of small
datasets and very few positive samples, although the attention mecha-
nism helps to generate new samples, the improvement is small. Because
the training stability of the attention module with adversarial loss is
extremely susceptible to the size of the training samples, that is, the
more unbalanced and the smaller the dataset, the more likely it will
reach model instability.

6. Discussion and future work

In this section, we first summarize the main differences between the
proposed CDA-GAN data augmentation model and previous studies in
medical image data augmentation. We also point out the limitations of
our proposed model as well as potential solutions to deal with these
limitations in the feature.

6.1. Comparison with previous work

Compared with the existing data augmentation models in medical
imaging, our proposed CDA-GAN is different from existing image-to-
image translation models [12,13,24,42]. In contrast to the model [24],
our proposed model integrates a spatial-attention module, so the model
can pay more attention to the region of interest. In contrast to trans-
lation models that also use spatial-attention modules to guide the
training procedure of generators, our train mechanism can force the
attention module to produce a more precise spatial attention map,
thus strengthening the quality of spatial encodings. Furthermore, CDA-
GAN substitutes the conventional residual block with an AMSE-residual
block, a move designed to capture channel-wise dependencies. This
replacement serves to enhance the representational power of Convolu-
tional Neural Networks (CNNs), and to stabilize the training procedure,

thereby improving the overall effectiveness of the model. Notably, we
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Fig. 6. Performances on the dataset with extreme class imbalance, where 𝑂-𝑠 repre-
sents oversampling in traditional data enhancement, and 𝑈 -𝑠 represents undersampling
in traditional data enhancement.

incorporate spectral normalization into our model. This addition is
crucial in preventing mode collapse in the discriminator. Mode collapse
is a common challenge in training GANs, where the generator starts
producing a limited diversity of samples, and the discriminator cannot
effectively distinguish between real and generated data. By introduc-
ing spectral normalization, we can mitigate this issue, enhancing the
stability and robustness of our CDA-GAN model.

6.2. Limitations and future work

Although the CDA-GAN data augmentation model achieves good
performance in classification and segmentation tasks, in the future, its
performance and image generation capacity can be further improved by
carefully dealing with the following limitations or challenges. Firstly, in
current research, the image-to-image translation is the one-to-one gen-
eration. The model generates individual outputs based on given inputs,
limiting the diversity of generated samples. Inspired by StarGAN [47],
we will try to solve this problem by introducing multi-domain transfor-
mation to the proposed model in our future work. The complex training
process of GAN limits its generation ability. Secondly, our current work
is based on 2D slices. We plan to extend our model to incorporate 3D
imaging, fully leveraging the model’s training stability and the authen-
ticity of the generated images. By generating 3D medical images, we
aim to enhance the performance of 3D medical imaging tasks, including
classification, segmentation, and detection. Furthermore, the Diffusion-
based model has been drawing significant interest in the field of image
generation lately. We found that there are still no unpaired image-
to-image generative models in the field of medical image generation.
Meanwhile, in the domain of natural images, there are two works
on unpaired image-to-image generation, a common feature of these
studies is the requirement to pre-train a DDPM [48] model on data
from both modalities [49,50]. We then conducted experiments with
DDPM. However, the model did not perform well on our dataset. We
were unable to train a DDPM model capable of generating reasonable
brain MRI images. As a result, we also could not train the above-
mentioned two unpaired image-to-image translation models based on
diffusion. We hypothesize that the underperformance could be due
to the extensive diffusion involved, which demands a larger dataset
for effective learning. In future work, we plan to either expand our
dataset to accommodate the requirements of diffusion models or to
integrate diffusion models into our existing strategy. Besides, We hope
that generative data augmentation can applied in the detection tasks of
medical imaging [51,52], and achieve better segmentation results than
the method of optimizing segmentation models [53] with limited data.

7. Conclusion

In this work, we propose a novel cross-domain generative data
16

augmentation model called CDA-GAN to enlarge the number of sam-
ples and balance the number of samples across categories to improve
performance on brain tumor classification tasks. Further, we propose
an information enhancement strategy for the segmentation task to the
attention-generated tumor feature map. In CDA-GAN, we apply the
AMSE-residual module, semi-supervised spatial attention, and spectral
normalization to capture the differences between different classes more
precisely, bridge the gap between local and global feature representa-
tions and stabilize the training process. In three public datasets based
on the BraTS and TCIA datasets, the effectiveness of our proposed data
augmentation model on medical image analysis tasks is extensively
evaluated.
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