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A B S T R A C T

A common problem in the field of deep-learning-based low-level vision medical images is that most of the
research is based on single task learning (STL), which is dedicated to solving one of the situations of low
resolution or high noise. Our motivation is to design a model that can perform both SR and DN tasks
simultaneously, in order to cope with the actual situation of low resolution and high noise in low-level vision
medical images. By improving the existing single image super-resolution (SISR) network and introducing the
idea of multi-task learning (MTL), we propose an end-to-end lightweight MTL generative adversarial network
(GAN) based network using residual-in-residual-blocks (RIR-Blocks) for feature extraction, RIRGAN, which can
concurrently accomplish super-resolution (SR) and denoising (DN) tasks. The generator in RIRGAN is composed
of several residual groups with a long skip connection (LSC), which can help form a very deep network and
enable the network to focus on learning high-frequency (HF) information. The introduction of a discriminator
based on relativistic average discriminator (RaD) greatly improves the discriminator’s ability and makes the
generated image have more realistic details. Meanwhile, the use of hybrid loss function not only ensures
that RIRGAN has the ability of MTL, but also enables RIRGAN to give a more balanced attention between
quantitative evaluation of metrics and qualitative evaluation of human vision. The experimental results show
that the quality of the restoration image of RIRGAN is superior to the SR and DN methods based on STL in
both subjective perception and objective evaluation metrics when processing medical images with low-level
vision. Our RIRGAN is more in line with the practical requirements of medical practice.
1. Introduction

Medical image, providing anatomical information to reveal struc-
tures of human body, is an indispensable component of clinical
computer-aided diagnosis (CAD), which provide key points: the shape,
size, kind of lesions and biomarkers to assist in lesion localization.
This means that in clinical applications, high quality and high spatial
resolution images are absolutely a must. While affected by many
factors, such as hardware cost of image acquisition equipment, image
mode, acquisition time, radiation dose, compression transmission, and
so on, low-level vision medical images exist low resolution and high
noise simultaneously, which directly affect the accuracy of disease
diagnosis.

Single image super-resolution (SISR) is a low-level vision method
aiming to get a high-resolution (HR) output from one low-resolution
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(LR) image to overcome hardware limitations and meet clinical re-
quirements [1], has gained increasing research attention in the field
of medical image for decades. As a notoriously challenging ill-posed
problem, many different kinds of methods have been proposed to solve
the SISR problem of appropriately filling in unknown extra pixels.

Traditionally, the mainstream algorithms of SISR can mainly be
divided into three categories. Interpolation-based SISR methods, such
as Bicubic interpolation and Bilinear interpolation, are very speedy but
make the restored image blurred. Reconstruction-based SISR methods
usually adopt sophisticated prior knowledge to restrict the possible
solution space with the advantage of generating flexible and sharp de-
tails, but time-consuming, like the iterative back projection method [2].
Learning-based SISR methods, like manifold learning and sparse cod-
ing [3], uses a large number of training data to learn some corre-
vailable online 27 October 2023
010-4825/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compbiomed.2023.107632
Received 27 April 2023; Received in revised form 5 October 2023; Accepted 23 Oc
tober 2023

https://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:zs@hebut.edu.cn
mailto:zhenghua.xu@hebut.edu.cn
https://doi.org/10.1016/j.compbiomed.2023.107632
https://doi.org/10.1016/j.compbiomed.2023.107632


Computers in Biology and Medicine 167 (2023) 107632M. Yu et al.
Fig. 1. Overall structure of RIRGAN, where the blue dotted line divides the RIR-G into three parts: feature extraction module, image amplification module and image restoration
module. The combination of SSC, LSC and GSC realizes fully extraction of different hierarchical features in noisy LR inputs. And RaD tries to predict the probability that HR image
(ground-truth) is relatively more realistic than output (SR image).
sponding relationship from LR-HR mapping. Since the down-sampling
and degradation operations are coupled and ill-posed, traditional SISR
methods cannot effectively restore some fine features and suffer from
the risk of producing a blurry appearance and new artifacts. Currently,
deep-learning-based SISR approaches [4,5] have been widely discussed
and have led to dramatic improvements in medical image processing.
With the proposal and rapid development of GAN, the GAN-based
SISR methods [6,7] have made breakthroughs in human visual percep-
tion and achieved remarkable performance in various medical image
modalities [8–10].

Unfortunately, there are three urgent issues in the research of low-
level medical image SISR methods. The first issue is that the majority of
approaches proposed to address high noise or low resolution problems
in low-level medical image rely on single task learning (STL). However,
in clinical settings, low-level medical images are commonly affected
by both low resolution and image noise simultaneously, indicating
that medical image SR and DN are not entirely independent tasks.
The second issue is that the frequently used objective quantitative
metrics peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) results are inconsistent with human subjective visual
perception. Generated images with high PSNR and SSIM scores tend
to be blurry, while generated images that appear to have clear details
and textures typically poorly on PSNR and SSIM. The third issue is
that high-performance SISR methods with complex features extraction
blocks in deep or wide networks will lead to excessive network param-
eters and consume huge computational power [11], making it difficult
to apply to some mobile devices with limited storage and computing
resources [12], which is detrimental to the medical development in
remote regions.

To overcome the aforementioned issues, we propose an end-to-end
lightweight GAN-based method using RIR-Block for feature extraction,
called RIRGAN shows in Fig. 1, which can recover potential high-
frequency (HF) information and remove redundant noise information
that affects diagnostic effect. Based on the characteristics of low-level
vision medical images, RIRGAN combines the advantages of existing
SISR models and introduces the idea of multi-task learning (MTL) [13],
where super-resolution (SR) and denoising (DN) tasks share the bottom
structure of the network with hard parameter sharing, and finally
2

achieve the goal of executing both SR and DN tasks simultaneously
through constraints of different loss function. The RIRGAN with percep-
tual realistic details pays more balanced attention to quantitative and
qualitative metrics, and achieves satisfactory results in both of them by
using a hybrid loss function. As a lightweight network, RIRGAN with
the help of RIR-Blocks and RaD strikes a balance between effectiveness
and efficiency.

Generally, the proposed RIRGAN has the following three main im-
provements. First, to fully extract the features of low-level images, we
use RIR-Blocks to change the Res-Blocks in SRGAN and use short skip
connection (SSC), long skip connection (LSC) and global skip connec-
tion (GSC) together to achieve local residual learning, regional residual
learning, global residual learning and ensure the fully extraction of
different hierarchical features of input image [14]. Specifically, with
the assist of additional bypass connections, the model is more effective
and robust for feature extraction. Thus, the model can use these features
to generate more reliable details.

Furthermore, the second advancement of RIRGAN is to replace the
original standard discriminator with the relativistic average discrimina-
tor (RaD) [15,16]. Specifically, the loss function of RaD estimates the
probability that the HR image is relatively more realistic than the SR.
This undoubtedly imposes higher requirements on the generator, which
means that the generated SR image will have more realistic details.

Finally, to implement MTL for both SR and DN tasks, we train
RIRGAN with a hybrid loss function which composed of pixel loss,
perceptual loss, adversarial loss and total variation (TV) loss [17]
through different weights. Pixel loss and perceptual loss are used to
help improve the resolution of LR inputs, adversarial loss is used to
guide the confrontation between generator and discriminator, TV loss
and pixel loss are mainly responsible for removing noise.

Among all kinds of medical images, we choose brain MRI as our
base data for three essential aspects: (i) Software method are more
economical than hardware: The high-fidelity instruments have a great
impact on MRI image quality, but powerful hardware is too expensive
for radiological centers located in remote rural areas. (ii) Image acqui-
sition process is susceptible: Clear MR images need long-term scanning,
during which it is difficult for patients to ensure do not move slightly,
but any small movement will produce artifacts that hinder doctor’s



Computers in Biology and Medicine 167 (2023) 107632M. Yu et al.

a
S
n
s
l

2

v
p
t
T
(
i
i
o
s
o
o

r
s
l
t
i

l
b
r
b

t
a
k
b
l
s

i
t
g
s
o
c
h
a
u
t
n
d
Z

diagnosis [18]. (iii) Published datasets are easy to link with other tasks: As
dataset designed for segmentation task, the Multi-modal Brain Tumor
egmentation (BraTS) [19], after processed by SR model can be conve-
iently connected to CAD as a new foundational pre-/post-processing
tep such as image quality enhancement [20], segmentation [21], and
esion detect [18].

For this paper, the main contributions are as follows:

• We identify a common shortcoming of low-level vision methods:
most of them are proposed for STL that can only solve one
task in SR or DN at a time. This shortcoming severely limits
their application in clinical practice. To alleviate this problem,
in this work, we propose an end-to-end MTL method, in which
SR and DN tasks share bottom structure with hard parameter
sharing of the feature extraction network, and different tasks are
given different attention through a hybrid loss. Ultimately, the
network achieves the goal of performing both SR and DN tasks
simultaneously.

• We proposed a lightweight RIR-generator (RIR-G) with SSC, LSC,
and GSC, which combines local residual learning, regional resid-
ual learning, and global residual learning to better extract the
different hierarchical features of low-level vision medical image,
which is proved to achieve better performances in objective nu-
merical metrics. We use RaD to further improve the perceptual
quality of the output image of RIR-G. Stronger feature extrac-
tion ability and a more advanced confrontation training strategy
ensure the clarity and definition of output.

• We considered both the reconstruction effect and algorithm ef-
ficiency when designing RIRGAN. RIRGAN pays more balanced
attention to quantitative evaluation of metrics and qualitative
evaluation of human vision. The relevant experimental results
conducted on low-level vision medical images show that our
RIRGAN has achieved satisfactory results.

. Related work

Medical images, some providing anatomical information and re-
ealing information about the structure of the human body, others
roviding functional information, locations of activity for specific ac-
ivities and task-specific, are of great importance for medical diagnosis.
he growing interest and development of single image super-resolution
SISR) algorithms dramatically influences the performance of medical
mage SISR tasks. Different from nature image SISR tasks, medical
mages, in general, have a lower signal-to-noise ratio, and the SR task
n medical images usually needs to be pipelined by applications such as
egmentation, classification and diagnosis, thus placing higher demands
n how to retain sensitive information in image and enhance structures
f interests (focusing lesions and their surrounding tissues).

The computer vision community has investigated many super-
esolution (SR) and denoising (DN) methods to address low-level vi-
ion. Deep learning aims to extract high-level abstract features and
earn potential distribution law of data through multi-layer nonlinear
ransformations. The studies of deep learning have led to dramatic
mprovements in SR and DN tasks.

In this paper, we propose an end-to-end lightweight multi-task
earning (MTL) network for SR and DN, which is improved on the
asis of SISR methods. Meanwhile, the SR task is the main task of our
esearch. Therefore, the following content will be primarily discussed
ased on SISR.

As an important branch of low-level vision, SISR is widely used
o improve medical image quality. We can view the process of SISR
s a model for predicting one HR image from its LR counterpart. A
ey step in this process is to acquire the features of the LR images
etter and faster. SRCNN [22] does the pioneering work of deep-
earning-based SISR methods, and Umehara et al. [23] use SRCNN
3

cheme to enhance image resolution of CT images. However, due to the p
fact that the SRCNN framework only has three convolutional layers,
it can only extract low-frequency (LF) features of inputs. The advent
of SRGAN has allowed the SISR methods to focus on improving the
quality of human vision rather than just pursuing high PSNR and SSIM
scores [24]. Some medical image SISR methods have been improved
based on SRGAN [25–27]. Despite achieving some successes, SRGAN-
based medical image SISR methods still have some drawbacks, such as
an insufficient feature utilization, numerous parameters. To further en-
hance the visual quality, we thoroughly studied three key components
of SRGAN, i.e., network architecture, confrontation training, and loss
function, and thus propose RIRGAN in this work.

Improving feature extraction module. The first improvement of
RIRGAN is to change the feature extraction module by RIR-Block
instead of Res-Block [29] in SRGAN. In recent years, there are many
deep-learning-based SISR methods trying to improve the network per-
formance by changing the feature extraction module. Chen et al. use
Dense Block to further improve the feature extraction ability and realize
the 3D multi-level super-resolution (SR) of MRI [30]. Wang et al.
introduce Residual in Residual Dense Block (RRDB) in SRGAN to fully
extract features of low-resolution (LR) image [9]. Zhu et al. [31] replace
Res-Block in SRGAN with Enhanced Residual Block in EDSR [4], and
the main difference is that removes the BN layer and increase residual
scale. A fine inpainting method based on feature fusion and two-steps
inpainting is proposed to overcome the problem of the existing image
inpainting methods that cannot make full use of complete region to
predict missing region features [32]. An image restoration method
combining Semantic Priors and Deep Attention Residual Group is also
proposed to solve the problems that the image inpainting methods
lacking authenticity [33]. To some extent, these basic blocks are all
based on the idea of residuals, but more complex bypass skip con-
nections are added, as shown in Fig. 2. Complex feature extraction
block means a large amount of parameters and too much computation.
While compared to the common SOTA SISR networks, RIRGAN is a
lightweight network with much smaller number of parameters as shown
in Table 1.

Additional paths ensure that gradients can be transferred to each
layer more effectively during back-propagation and prevent gradient
vanishing. Thus, the model can easily achieve a very good performance,
especially for minimizing pixel loss. However, the structure of dense
connections also made the model liable to getting stuck at certain
points, and insensitive to uncertain losses, such as GANs [31]. Second,
compared with natural images, medical images with limited size and
relatively lower contrast information, too many feature maps are often
overqualified, so medical images do not need wide models. Therefore,
although we change the feature extraction basic block in SRGAN,
we did not choose the overly complex bypass connection module,
but RIR-Block. Under the combined action of SSC, LSC and GSC, the
RIR-generator (RIR-G) ensures the extraction of different hierarchical
features of low-level vision medical image through local residual learn-
ing, regional residual learning, and global residual learning without
imposing too much burden on the network.

Improving confrontation training of GAN. In addition to improv-
ng the structure of the generator, we also enhance the discriminator
o change the confrontation training strategy. As we all know, GAN is
ood at generating images with rich details, but is hard to train. The
tandard discriminator in SRGAN estimates the probability of whether
ne input is real or fake, which makes SRAGN suffer from unstable and
ollapse mode that can affect the SISR results [24]. Many researches
ope to find a way to improve the confrontation between the generator
nd the discriminator to get a higher quality generated image. Zhu et al.
se WGAN with gradient penalty to achieve stabilized and efficient
raining and improved perceptual results [18]. Liang et al. add Gaussian
oise to the input of discriminator to increase the difficulty of the
iscriminant task [34]. To generate more perceptually realistic images,
hu et al. apply WGAN-based adversarial training [31]. Chen et al.

ropose an RNON compose of two independent GANs, and the two
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Fig. 2. Residual-based feature extraction basic block. These blocks are the basic unit of SOTA SISR networks: (A) Residual Block is used in SRGAN [24]; (B) Enhanced Residual
Block is used in EDSR [4]; (C) Dense Block is used in SRDenseNet [28]; (D) Residual Dense Block is used in RDN [5]; (E) Residual in Residual Dense Block is used in ESRGAN [16].
Table 1
Comparison of parameters between residual-based SOTA SISR method with complex
bypass connections and RIRGAN.

Methods MDSR [36] SRGAN [24] EDSR [4] SRDensNet [28]
Params 6.7M 4.5M 43M 30.4M

Methods RCAN [14] ESRGAN [16] RDN [5] RIRGAN
Params 16M 30.2M 17.2M 3.3M

GANs are responsible for solving the problem of repairing irregular
missing regions and the local color difference respectively [35].

We choose to replace standard discriminator in SRGAN with RaD
using in Relativistic average GAN [15]. The RaD can judge whether
one image is more realistic than the other image [16]. Our experi-
ments show that the use of RaD can guide the generator to recover
more realistic texture details with perceptual quality and boost the
performance.

Improving learning methods of task. Third, for better application
in the real world, we introduce the idea of MTL [13,37] so that
RIRGAN can learn SR and DN tasks concurrently during training. Most
medical images low-level vision methods based on deep learning are
Single Task Learning (STL), for SR, or for DN. Yan et al. present a SR
algorithm for SPECT reconstruction with compensation for non-uniform
attention [38]. Mahapatral et al. introduce the triplet loss to SRGAN
to realize cardiac MRI SISR, and achieve good results in big scaling
factor [8]. Zhang et al. develop a CT SR method which can reconstruct
LR sonograms into HR CT images [39]. In low-level vision of medical
images, since people usually study SR and DN as two independent tasks,
this leaves a lot of noise after SR processing. Although Zhang et al.
mention that the image noise level and resolution of SPECT images
are relatively poor, but they only use GAN in static SPECT image
denoising [40]. We notice that the above works only focus on one
problem in low-level vision medical image, which have poor clinical
applicability, so there is still a lot of noise after SR processing.

Chen et al. use transformer architecture based image processing
transformer (IPT) model to train on huge datasets (over 10 millions of
images), then fineturned on specific small datasets, and finally achieved
good results in SR, DN and deraining [41]. While our RIRGAN uses the
share bottom structure, i.e., the SR and DN tasks share input and feature
extraction layers, and hard parameter sharing, then use different losses
to constrain the outputs of two tasks. The idea of MTL greatly improves
the efficiency of the network, and ensures that RIRGAN can establish
a nonlinear end-to-end mappings from noisy LR input to denoising and
deblurring output, and has advantages in handling complex-problems.
4

3. Methods

Fig. 1 shows the overall structure of RIRGAN. In contrast to SRGAN,
RIRGAN mainly consists of three advanced modules: RIR-G based on
RIR-Block feature extraction module, RaD used to assist in adversar-
ial training, and hybrid loss function for Multi-task learning (MTL).
Specifically, several enhanced residual blocks composed RIR-Block with
short skip connection (SSC) and long skip connection (LSC), which can
help form a very deep network and enable the network to focus on
learning of HF information. Global skip connection (GSC) connects low-
frequency (LF) and high-frequency (HF) features together to prevent
feature loss of input images. The RIR-G with SSC, LSC and GSC ensures
that the network has the ability to extract multi-hierarchical features
of noisy low-resolution (LR) input through local residual learning,
regional residual learning, and global residual learning. RaD estimates
the probability that high-resolution (HR) image is more realistic than
super-resolution (SR) image. The use of new confrontation strategy
can push the RIR-G to learn an inter-domain mapping and produce
compelling rich detailed images and boost the performance in PSNR
and SSIM. To achieve MTL of low-level brain MRI, we designed a hybrid
loss function, which gives different constraints to the features extracted
by RIR-G through different loss function. It also enables RIRGAN to
give more balanced attention between quantitative and qualitative
evaluations, and makes RIRGAN in line with the actual requirements
of medicine.

3.1. Problem statement

Single image super-resolution. SISR aims to restore an HR image
from one LR observation of the same object. The LR image 𝑦 can be
modeled as:

𝑦 = (𝑥 ⊗ 𝑘) ↓𝑠 +𝑛, (1)

Where 𝑥 denotes the unknown HR image, 𝑘 is the blurry kernel, and
𝑥⊗𝑘 is the convolution between both of them. ↓ is the down-sampling
operator with scale factor 𝑠, and 𝑛 represents the possible independent
noise term. In the SR task, the size of the output image is enlarged
relative to the input image. This is an extremely ill-posed problem for
we do not know what exactly is the part of an image that needs to be
completed.

Image denoising. The goal of image denoising (DN) task is to
remove redundant noise information which pollutes input and restore
the potentially clean image. Taking the most common additive noise as
an example, the noise image can be simplified as:

(2)
𝑦 = 𝑥 + 𝑛,
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Fig. 3. Differences between STL and MTL when handling complex-task. STL decomposes complex-task into several sub-tasks and uses multiple networks to train each sub-task
separately. In MTL, due to the inherent correlation between different sub-tasks, only one network needs to be trained to complete multiple tasks.
where 𝑥, 𝑦 and 𝑛 represent the clean image, noisy input and noise
respectively. In the DN task, the size of the output image is consistent
with the input image.

Our goal is to improve a noisy low-resolution (LR) brain MRI to a
clean and high quality one. The main challenges are listed as follows.
First, compare with natural images, noisy LR image in low-level med-
ical vision contain more complex spatial variations and correlations,
which limit the performance of traditional SISR methods. Second, the
image with noise and artifact patterns creates difficulties for algorithms
to produce a perfect output. Finally, up-sampling and degradation
operations are coupled and ill-posed. Traditional SISR methods cannot
be performed beyond a marginal degree, which cannot restore fine
features effectively and suffer from the producing blurry and new
artifacts [42]. To address these limitations, we introduced the idea of
multi-task learning (MTL).

Multi-task learning. At present, most deep-learning-based models
are single task learning (STL), i.e., training a model can only com-
plete one task. When handling complex-tasks, the usual method is to
decompose the complex-task into simple and independent sub-tasks to
solve them separately, and then combine the results of the sub-tasks
to get the results of the original complex-task [43,44]. In MTL, the
main task uses domain specific information possessed by the training
signals of related auxiliary tasks as an inductive bias. MTL model can
learn multiple related tasks learn in parallel through the share bottom
representation, and the gradients are simultaneously back-propagated
to improve the generalization performance of main task. When han-
dling complex tasks, the differences between STL and MTL are shown
in Fig. 3.

Compared with STL, the advantages of MTL [13] are: (i) High
efficiency : The basis that a network can learn multiple tasks is that all
the sub-tasks have an inherent correlation. Multiple related tasks can
be completed in one training, which hugely improves the efficiency
of the network. (ii) Strong model generalization ability : In the learning
process, a shared representation is used to share and supplement the
domain information learned from each other, for the sake of promoting
learning and improving the generalization effect. (iii) Difficult to sink
into local minima: In STL, the backpropagation of gradient is easy to
fall into local minima. While in MTL, local minima of different tasks
are in different positions, which can help to implicitly escape local
minima in the backpropagation of gradient. (iv) Difficult to over-fitting :
Multiple tasks in shallow shared representation can weaken the ability
of network and reduce the occurrence of network over-fitting.

Through the introduction above, we know that the focus of the
SR task is to complete unknown pixel information, and the key point
of the DN task is to removal redundant noise information, shown in
Fig. 4. ‘‘complete’’ and ‘‘removal’’ seem to be two completely opposite
words, but we have found the inherent correlation of two tasks in
deep learning, i.e., feature extraction of high frequency details of input
5

Fig. 4. Differences between SR (SISR) and DN tasks. The size of the output image in
the SR task has enlarged compared to the input image, adding a lot of pixel information
that was not present in the original input image. In the DN task, the output image has
the same size as the input image, reducing redundant noise information in the input
image.

image, which is the basis for us to design an MTL network that can
simultaneously complete SR and DN tasks.

Our RIRGAN adopts share bottom structure with hard parameter
sharing in MTL, two tasks, SR and DN share the bottom network
structure of input layers and feature extraction layers, and network
parameters, then use different loss functions to constrain the output
of two tasks, which ensures our RIRGAN is an end-to-end model. Put it
differently, our RIRGAN implements the sharing of network parameters
in the form of shared features. In our model, the dominant main task is
the SR task, and the DN task is the related auxiliary task as an inductive
bias for SR task. We use 𝐼𝑙𝑟+𝑛 to represent the input LR image with
random Gaussian noise to simulate low-level visual medical images,
and 𝐼𝑚𝑡𝑙 represents the output of RIRGAN.

𝐼𝑚𝑡𝑙 = 𝐺(𝐼𝑙𝑟+𝑛 , 𝑠; 𝜃𝐺), (3)

Where 𝐺 is the RIR-G and 𝜃𝐺 denotes its trainable weights. And then we
use 𝐿𝑚𝑡𝑙 represents the loss function between the image generated by
𝐺 and the ground-truth 𝐼𝑔𝑡. Through backpropagation we can calculate
gradients and update weights 𝜃𝐺:

𝜃𝐺 = argmin
𝜃𝐺

𝐿𝑚𝑡𝑙(𝐺(𝐼𝑙𝑟+𝑛 ), 𝐼𝑔𝑡). (4)

3.2. Lightweight RIR-G

To fully extract the multi-hierarchical features of noisy LR input,
the first improvement of RIRGAN is to change the basic block of the
feature extraction module in SRGAN. Specifically, RIR-G is composed
of three parts: feature extraction module, image amplification module,
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and image restoration module. The feature extraction module first
uses a Conv layer and a PReLU layer to extract low-frequency (LF)
information of input, which is shown on the left side of the red
dotted line in Fig. 1. While extracting high-frequency (HF) information,
different from SRGAN, we change the Res-Block by RIR-Block [14]. In
RIR-Block, five Enhanced Residual Blocks (which shows in Fig. 2, and
short for ERes-Block in Fig. 1) with LSC and residual scale 𝛼 form the

IR-Block. Several RIR-Block groups form a very deep network, which
nables the network to focus on learning HF information. Then we
se GSC fuse LF and HF information, which ensures blending different
ierarchical features together. To realize the amplification with scale
actor 4, we connect two sub-pixel layers in series. And the image
estoration module includes a convolution and a tanh layer and finally
utputs the SR image.

The advantages of using RIR-Block based RIR-G to extract features
f noisy LR input are threefold:
(i) RIR-G removes the BN layer. BN layer will normalize the

eature and this normalization can accelerate the speed and reduce the
ifficulty of network training, which is conducive to detection [45]
nd segmentation [46,47] in medical imaging. However, the normal-
zation also changes original image information to a certain extent and
akes the network lose flexibility. As classic low-level vision regression

asks, SR and DN require various features to provide quality support
or output images. While the authenticity and accuracy of extracted
eatures are the key point to ensure the reliability of output. The feature
ormalization caused by the BN layer is disadvantageous for SR, DN,
nd image generation tasks (it may bring extra artifacts).
(ii) RIR-G uses more bypass connection path. The skip con-

ection used in SRGAN ensures local feature fusion to achieve local
esidual learning. While in RIRGAN, we use RIR-Block based RIR-G
nstead the Res-Block based generator by increasing SSC, LSC and GSC.
he SSC has the same function as the skip connection in SRGAN to
ealize the local residual learning. The newly added bypass connections
SC enables the network to achieve regional feature fusion by regional
esidual learning and helps to stabilize the training of the network.
fter obtaining multi-level region features, we use GSC realize global
esidual learning to achieve global feature fusion, which adaptively
reserves the hierarchical features globally. In other words, our RIR-
realized the extraction of different hierarchical features of noisy LR

nput and RIR-Block optimizes feature transmission between neural
etwork layers and enhances the diversity and quality of the generated
mage. From the perspective of forward propagation, SSC, LSC and GSC
ogether accumulate the extracted hierarchical features, increase the
tability, and help prevent training saturation and over-fitting.
(iii) RIR-G is more inline with medical image. We do not choose

he other extraction blocks in Fig. 2 with too complex and that much
ypass connections [5,16,28] for: (1) complex feature extraction block
eans a large amount of parameters and too much computation, (2)

raining a wider network with dense blocks would become complicated,
3) the structure of dense connections also made the model liable
o getting stuck at certain points, and made the model insensitive to
ncertain losses such as GANs [31]. In practical medical applications,
oo deep and so wide models are unnecessary. RIRGAN is a lightweight
etwork only have 3.3M parameters, which is much smaller than
ther SOTA SISR method with complex bypass connections shown
n Table 1. The lightweight model has obvious advantages in the
esearch of some mobile devices with limited storage and computing
esources [11,12], which is beneficial to the medical development
f underdeveloped remote areas. And a number of experiments on
ome benchmarks have proved that our proposed RIRGAN can achieve
omparable performance against the SOTA with a more lightweight
odel.

The formal process of RIR-G can be written as follows. First, by
efining the input image as 𝐼𝑙𝑟+𝑛 , the output feature of the LF feature
xtraction module is:

= 𝐻 (𝐼 ),
6

0 𝐿𝐹 𝑙𝑟+𝑛 (5) f
Where 𝐻𝐿𝐹 (∙) denotes convolutional operation. And 𝐹0 is the extracted
LF feature. It is not only the output of the LF feature extraction network
but also the input of the HF feature extraction network composed of 𝑁
RIR-Blocks. The output of the HF feature extraction network we call it
as:

𝐹𝐻𝐹 = 𝐻𝑅𝐼𝑅(𝐹0), (6)

Where 𝐻𝑅𝐼𝑅(∙) denotes RIR-Blocks. To prevent the sharp increase in
network parameters and limit the application in practical, we set the
number of RIR-Blocks in generator to 𝑁 = 8.

We made a global feature fusion of LF feature 𝐹0 and HF feature
𝐹𝐻𝐹 to adaptively preserve the hierarchical features globally through
GSC, then get

𝐹𝐺𝐹 = 𝐹0 + 𝐹 ′
𝐻𝐹 . (7)

Finally, the extracted feature maps of the input through image
amplification module 𝐴 and image restoration module can get

𝐼𝑚𝑡𝑙 = 𝐺(𝐼𝑙𝑟+𝑛 ) = 𝐴(𝐹𝐺𝐹 (𝐼𝑙𝑟+𝑛 ), 𝑠). (8)

Algorithm 1 The algorithm of RIR-G for noisy LR MR image
Input: noisy LR MR image: 𝐼𝑙𝑟+𝑛
utput: restored MR image: 𝐼𝑚𝑡𝑙

1: 𝐼𝑙𝑙+𝑛 enters into RIR-G;
2: // Stage 1. feature extraction
3: Extract LF features based on Eq. (5);
4: Extract HF features based on Eq. (6);
5: Fusion of hierarchical features based on Eq. (7);
6: // Stage2. amplification
7: Use 2 sub-pixel layers to amplify the 𝐹𝐺𝐹 by 𝑠 = 4;
8: // Stage 3. restoration
9: Obtain 𝐼𝑚𝑡𝑙 through image restoration module.

3.3. RaD

In RIRGAN, we use RaD to push the generator to learn an inter-
domain mapping and produce compelling targets. Generally, the dis-
criminator predicts the probability that the input image is real or
fake [24], which makes GAN very difficult to train. RaD tries to
estimate the probability that a real image (𝐼𝑔𝑡 or HR image) is relatively
more realistic than a fake one (𝐼𝑚𝑡𝑙 or SR image), as shown in Fig. 1.

Specifically, our discrimination loss function becomes

𝐿𝑅𝑎
𝐷 = − 𝐸𝐼𝑔𝑡 [log(𝐷𝑅𝑎(𝐼𝑔𝑡, 𝐼𝑚𝑡𝑙))]

− 𝐸𝐼𝑚𝑡𝑙 [log(1 −𝐷𝑅𝑎(𝐼𝑚𝑡𝑙 , 𝐼𝑔𝑡))],
(9)

here 𝐼𝑔𝑡 represents the ground-truth, 𝐸𝐼𝑚𝑡𝑙 [∙] represents the average
f all fake data in the mini-batch.

The corresponding loss function of our generator should also be
hanged to:
𝑅𝑎
𝐺 = − 𝐸𝐼𝑔𝑡 [log(1 −𝐷𝑅𝑎(𝐼𝑔𝑡, 𝐼𝑚𝑡𝑙))]

− 𝐸𝐼𝑚𝑡𝑙 [log(𝐷𝑅𝑎(𝐼𝑚𝑡𝑙 , 𝐼𝑔𝑡))].
(10)

Benefits from the gradients from both generated SR image and real
R image in adversarial training, our RIRGAN can learn more realistic
etails with high quality.

.4. Hybrid loss function

Although the features of noisy LR brain MRI have been fully ex-
racted, and high-quality output can be generated thanks to RaD, now
IRGAN can only achieve STL. To realize MTL, the features extracted
y the feature extraction module need to be constrained by different
oss functions, that is why we proposed a hybrid loss function. SR and
N tasks have the same loss functions, but also have different loss
unctions. We will introduce them in detail in the following content.
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Pixel loss. Pixel loss is the most common loss function in low-level
vision, which can be used for both SR and DN tasks. It directly compares
each pixel value of the output image get by network processing with
the corresponding pixel in ground-truth. Pixel loss prefers to encourage
blurry and encourage network to find an average of many plausible
solutions and lead to over-smooth results. We choose L1 loss as our
pixel loss, which is also known as the mean absolute error (MAE).
The goal of L1 loss is to minimize the absolute sum of square of the
difference between ground-truth and output,

𝑝𝑖𝑥 = 1 =
𝑛
∑

𝑖=1

|

|

|

𝐼𝑔𝑡 − 𝐼𝑚𝑡𝑙
|

|

|

. (11)

Compared with MSE loss, L1 loss is more stable for outliers, which
can add constraints to network and help the network converge quickly.
The image trained by L1 loss has good numerical performance on the
metrics of PSNR.

Perceptual loss. Owing to the signal aliasing in LR inputs, HR im-
ages are difficult to be faithfully restored. Perceptual loss is proposed to
enhance visual quality by minimizing error in a feature space instead of
pixel space and making the resulting image more semantically similar
to target image. The formula for perceptual loss is as follows:

𝑝𝑒𝑟(𝐼𝑔𝑡, 𝐼𝑚𝑡𝑙) = 𝐸(|𝑙(𝐼𝑔𝑡) − 𝑙(𝐼𝑚𝑡𝑙)|
2), (12)

where  is a pre-trained VGG19 model and 𝑙 denotes the feature maps
of the specific layer of  .

Perceptual loss is applied in both SR and DN tasks to enhance
the texture of a restored image. Applying perceptual loss in GAN can
generate images with more natural details, partly reducing visually
unpleasant artifacts, especially when handling fine-scale details im-
ages. Although the results after perceptual loss training have improved
perceptually realistic and were more in line with human visual require-
ments, while perceptual loss cause the pixel-wise differences to the
ground-truth, so it cannot achieve optimal results on metrics of RSNR
and SSIM [48].

Adversarial loss. Recently, GAN become popular to hallucinate
details. GAN consists of a generator and a discriminator. The discrimi-
nator aims to distinguish generated fake images from real ground-truth
images, while the generator aims to fool the discriminator. Adversarial
loss is the loss function used to balance generator and discriminator
in GAN. The discriminator and generator are constantly confronting
each other under the effect of adversarial loss, and finally guide the
generator, generating images with natural details. Put it another way,
an adversarial loss is applied to distinguish ground-truth or generated
one. Thus, the basic adversarial loss function is defined as:

𝑎𝑑𝑣 = −𝐸𝐼𝑔𝑡 [log𝐷(𝐼𝑔𝑡)] − 𝐸𝐼𝑙𝑟+𝑛 [log(1 −𝐷(𝐺(𝐼𝑙𝑟+𝑛)))], (13)

where 𝐼𝑙𝑟+𝑛 denotes the low-level vision input with low-resolution and
noise in our task.

GAN is good at generation task of ‘‘creating something out of
nothing’’, which makes it very suitable for ill-posed low-level vision
task like SR and DN. Why does GAN works in our task? In fact, GAN
is equivalent to letting the model learn what is noise information and
what is useful information for SR, i.e., dividing the original visual
feature space into noise space and useful space for SR, so that the model
not fit the noise space when doing SR task [49]. To generate more
perceptually realistic images we choose to use RaD, and the detailed
formula can be found in Section 3.3.

Total variation loss. The total variation (TV) of an image contam-
inated by noise is significantly larger than that of an image without
noise, so limiting the TV will limit the noise of image. The basic idea of
TV denoising is that if the details of an image have a lot of HF informa-
tion (such as spikes, noise, etc.), the sum of gradient amplitudes (TV) of
the entire image can be reduced, the difference between adjacent pixel
values in the image can be reduced by minimizing TV, thus achieving
7

the goal of DN [50]. By defining an SR image as 𝑥, TV is the sum of
gradients in the pixel domain:

𝑡𝑣(𝑥) =
∑

𝑖,𝑗
|𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗 | + |𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗 |, (14)

where 𝑥𝑖+1,𝑗 and 𝑥𝑖,𝑗+1 is the adjacent pixels of the pixel 𝑥𝑖,𝑗 in the given
SR image. The advantage of TV denoising is that it can remove noise
while preserving information such as boundaries in the image.

In the process of low-level vision, a little noise on input may
have a great impact on output, because usually many low-level vision
algorithms will amplify noise inevitably. At this time, it is necessary to
add some regularization items to maintain image smoothness. TV loss
is such a good regularization loss, which is capable in promoting the
image’s spatial smoothness and reducing noise [17].

Hybrid loss function. In MTL, the role of different losses in differ-
ent tasks is usually different. Among them, pixel loss and perceptual
loss are good at improving the resolution of output. Adversarial loss is
used to guide the confrontation between generator and discriminator,
and make sure the output with more natural details. TV loss and pixel
loss play a major role in noise removing. The existence of TV loss
guarantees that RIRGAN can remove noise when doing SR task. This
makes it unnecessary to train SR and DN separately as two independent
tasks.

If we simply add up the losses of different tasks, it may lead to MTL
being dominated by a certain task or deviation of the overall learning
task. The model may tend to fit the main task it thinks, and the effect
of other tasks will be negatively affected, resulting in poor final results.
To train the model in the desired direction, we configure a fixed weight
parameter for each loss and combine multiple loss functions into a
hybrid loss function.

In the process of training, we find that the TV loss converged very
quickly. That is to say, in RIRGAN, DN is a relatively simpler auxiliary
task, so the weight of TV loss should be much smaller than the weight
for SR tasks according to Liu et al. [37]. At the same time, the existence
of TV loss will make the output of the network over smooth, which is
inconsistent with the purpose of our main task, SR task. Therefore, we
hope to reduce the impact of TV loss on SR task as much as possible
on the premise that it can complete the DN task, which makes RIRGAN
achieve the effect of balancing performance of the overall network.

Our hybrid loss function is:

𝑚𝑡𝑙 = 𝜆 × 𝑝𝑖𝑥 + 𝛾 × 𝑝𝑒𝑟 + 𝛽 × 𝑡𝑣 + 𝜂 × 𝑎𝑑𝑣, (15)

where the hybrid loss function is a weighted sum of these loss terms,
with the weights 𝜆, 𝛾, 𝛽, and 𝜂 controlling the relative importance of
each term.

4. Experiments

4.1. Dataset and preprocessing

We pick the Multi-modal Brain Tumor Segmentation (BraTS) dataset
[19] as our experimental dataset, which provides MRI scans of 210
patients with glioblastoma (HGG) and 75 patients with lower grade
glioma (LGG). BraTS is a multi-modal dataset, which constrains 4
versions of brain MRI scans, including native (T1), contrasted enhanced
T1-weighted (T1ce), T2-weighted (T2), and T2 Fluid Attenuated In-
version Recovery (T2-FLAIR) volumes, and serves as a good proxy for
medical images. We picked the T1ce version as our training images,
because the images of this version are the most complete for the brain,
which is suitable for our experimental requirements compared with the
other three versions.

BraTS is specially designed for segmentation task, where the shape
of each 3D CT volume is 240 × 240 × 155, i.e., containing 155 2D
image slices with the size of 240 × 240. However, only the middle parts
of these 2D image slices contain useful information (i.e. the brain),
while the rest is purely black and useless. Therefore, in order to help
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the model better learn the image features, ‘‘center-crop’’ operation is
conducted in pre-processing to remove black areas at the edge of the
image and retain only useful information in the middle of the image.
Consequently, in training stage, HR ground-truth slices are cropped
to the size of 96 × 96 to maximize the elimination of useless black
areas (and the size of SR output images in training are also set as
96 × 96). Differently, in testing stage, the HR medical images are
cropped to a larger size, 128 × 128, which is because of the following
reasons: (i) Most of the existing single image super resolution (SISR)
works [8,25,31] adopt the image size of 128 × 128 in their experiments,
so we follow the same setting to keep fair comparison. (ii) More
importantly, in real-world clinical use, medical images are of diverse
sizes, so we cannot guarantee that the important information of each
image always appears in a central area with a fixed size, e.g., 96 × 96;
so, to retain all useful information, we tend to be more conservative
with image cropping in practical usage, which inevitably make the
images still contain some black edge areas; therefore, we believe using a
larger center-crop size of 128 × 128 to include a certain extent of black
areas in the testing data will make our experiments more practical.

In addition, in the SISR task, low-level vision medical images are
also needed, which should have exactly the same content as the high-
level vision medical images but with lower resolution. However, in
clinical practices, it is almost impossible for any medical imaging
device to obtain paired real high-resolution and low-resolution images
simultaneously at the same time; and if the high-resolution and low-
resolution images are obtained from different devices (or) at different
time, due to the change of the patients’ postures, the resulting medical
images will have different content; and even small differences in the
paired high-resolution and low-resolution images will bring significant
bias to the evaluation of model performances. Consequently, a widely
adopted approach in the field of SISR is to degrade high quality medical
to simulate low-level medical images [8,25,31]. Similarly, as for the
denoising tasks, it is also impossible to obtain a pair of real high-noise
and low-noise medical images with exactly the same content simulta-
neously using any medical imaging device, so the existing denoising
works [8,51,52] usually use additional artificial noises to simulate
the high noise images. Therefore, in this work, we follow the same
operations as in [8,25,31] to use a down-sampling factor of 𝑠 = 4 to
obtain low-resolution medical images (with the sizes of 24 × 24 in
training and 32 × 32 in testing) from HR medical images, and then
Gaussian noises are further added as in [8,51,52] to generate low-level
vision medical images with not only low-resolution but also high-noise.

Please note that although due to the above fact that it is impossible
to obtain paired real high-level and low-level medical images with
the same content, we were certainly unable to quantitatively compare
the similarity between simulated low-level medical images and real
low-level medical images, we still invited four radiologists with more
than five years’ clinical experience from the Department of Radiology,
Hainan Women and Children’s Medical Center, China, to subjectively
evaluate the rationality of using the simulated low-level medical im-
ages. Based on their clinical experience and expertise, all four doctors
believe that these simulated low-level CT images show characteristics
that are relatively similar to the real low-level CT images in their
clinical practices, so it is reasonable to use them to simulate the real
ones in the experimental studies. The workflows of training and testing
are shown in Fig. 5.

4.2. Baselines

Our RIRGAN is proposed through modification based on the SISR
method, and SR task is the main task in our MTL model. In order to
evaluate the performances of the proposed RIRGAN, we chose four clas-
sical and representative SISR methods: Bicubic, SRResNet, SRGAN [24]
and RDN [5]. The reasons for selecting these methods as the baselines
are as follows. (i) Bicubic is the most common interpolation amplifi-
cation method in practical applications, and we also choose it as our
8

Fig. 5. Workflows during training and testing process when RIRGAN handles BraTS,
for a ×4 up-sampling task.

image degradation method. (ii) SRResNet is a residual block based
perception-driven method without using GAN. (iii) SRGAN is arguably
the most widely adopted GAN-based SISR model, and it is also used
as the backbone of the proposed RIRGAN. (iv) RDN is selected as the
representative of PSNR-oriented method, which is the state-of-the-art
deep learning based end-to-end SISR model with Residual Dense Blocks
(8 blocks are used here). (v) Our RIRGAN is a lightweight residual
learning based network, and for the sake of fairness, we did not choose
the SR methods with too large parameters as our baseline.

4.3. Implementation settings

Our experiments are implemented using the PyTorch framework1

and run on two NVIDIA GeForce GTX 2080Ti GPUs. The implemen-
tation details of the proposed RIRGAN are shown as follow. Each
RIR-Block used in RIR-G contains 5 Enhanced Residual Blocks with SSC,
which form a residual group through LSC and s residual scale 𝑎 = 0.2.
And the number of RIR-Blocks in RIR-G is 𝑁 = 8. Layers in LF feature
extraction and HF feature extraction module have 𝑤0 = 64 filters. The
Sub-Pixel layers in image amplification module have 𝑤1 = 256 filters.
And the last convolutional layer in image restoration module has 𝑤2 = 3
filters. In RIR-G, expect for the convolutional kernel size of first and last
convolutional layers are 9 × 9, other convolutional layers are all with
kernel size 3 × 3. Our RIRGAN follows the structure of the discriminator
in SRGAN [24], where the numbers of feature maps are 64, 64, 128, 128,
256, 256, 512, 512.

We trained the RIRGAN on the pre-processed BraTS slices for 200k
update iterations, with a mini-batch size of 𝑛 = 16 using Adam
optimizer with parameters 𝛽1 = 0.5, 𝛽2 = 0.999, a learning rate of
10−4 of the generator and a learning rate of 10−6 of the discriminator.
The specific weights in the hybrid loss function specifically designed
for MTL in Eq. (15) are 𝜆 = 0.006, 𝛾 = 1, 𝛽 = 2 × 10−9, and 𝜂 = 5 × 10−3

respectively. From the composition of the hybrid loss function, we can
also see that the SR task is the dominant main task and the DN task is
the related auxiliary task.

4.4. Evaluation metrics

To evaluate the performances of our proposed RIRGAN and other
SOTA methods, we selected two kinds of widely used objective evalu-
ation metrics.

Image quality evaluation. PSNR is an error sensitive image quality
evaluation metric based on the statistics of image pixel information,
and is the most widely used evaluation criteria for SR and DN tasks.

1 https://pytorch.org/

https://pytorch.org/
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Table 2
Quantitative multi-task learning results of the proposed RIRGAN and the baselines in
terms of numerical objective metrics. ↑ represents the larger the better, ↓ represents
the smaller the better, − means that we are not concerned about the size of this value,
but we still marked the maximum one. The best results of each row are marked bold.

Metric Bicubic SRResNet SRGAN RDN RIRGAN

PSNR

Mean↑ 25.66 24.91 25.05 28.24 28.26
Var↓ 5.691 10.30 14.26 17.34 3.413
Std↓ 2.386 3.210 3.776 4.165 1.847
Min− 19.10 17.52 16.98 15.07 21.12
Max− 30.18 30.92 33.21 34.14 31.62
𝛥 ↓ 11.08 13.40 16.23 19.07 10.50

SSIM

Mean↑ 0.7893 0.7301 0.8294 0.8661 0.8833
Var↓ 0.0007 0.0007 0.0010 0.0031 0.0005
Std↓ 0.0268 0.0262 0.0313 0.0552 0.0213
Min− 0.6977 0.6455 0.7004 0.6062 0.8129
Max− 0.8318 0.8405 0.8815 0.9356 0.9304
𝛥 ↓ 0.1341 0.1950 0.1811 0.3294 0.1175

The larger the value of PSNR, the smaller the distortion of the generated
image relative to the ground-truth. The formal definition of PSNR is as:

PSNR(𝐼𝑚𝑡𝑙 , 𝐼𝑔𝑡) = 10 × log10(
(𝐿)2

1
𝑁

∑𝑁
𝑖=1(𝐼𝑚𝑡𝑙(𝑖) − 𝐼𝑔𝑡(𝑖))2

), (16)

where 𝐿 denotes the maximum pixel (𝐿 = 1.0 in our case), and 𝑁 is
the number of all pixels in 𝐼𝑚𝑡𝑙 and 𝐼𝑔𝑡. The unit of PSNR is 𝑑𝐵.

SSIM is an image quality evaluation metric based on image structure
information statistic, which measures image similarity from brightness,
contrast, and structure. SSIM value range 0 to 1, and the larger the
value, the smaller the image distortion. The formal definition of SSIM
is as:

SSIM(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝜅1
𝜇2
𝑥 + 𝜇2

𝑦 + 𝜅1
⋅

𝜎𝑥𝑦 + 𝜅2
𝜎2𝑥 + 𝜎2𝑦 + 𝜅2

, (17)

where 𝑥, 𝑦 denote two images to be compared, 𝜇 and 𝜎2 are the mean
and variance, 𝜎𝑥𝑦 is the covariance between 𝑥 and 𝑦, and 𝜅1, 𝜅2 are
constant relaxation terms.

Unfortunately, both PSNR and SSIM are limited to measure the
fidelity quality, but they do not fully consider the visual characteristics
of human (human is highly sensitive to the contrast difference with
low spatial frequency, human sensitivity to brightness contrast differ-
ences is higher than chromaticity, and human perception of an area
is affected by its surrounding areas, etc.). So the evaluation results of
PSNR and SSIM cannot be consistent with human subjective perception
sometimes. Put it differently, the over-smoothed images are reported to
achieve higher PSNR and SSIM scores than texture rich images [18,24].

Network output stability evaluation.The Mean value refers to the
sum of all data in a group of data divided by the number of this group
of data.

�̄� =
𝑋1 +𝑋2 +𝑋3 +⋯ +𝑋𝑛

𝑛
, (18)

where 𝑋𝑖 represents the specific value of Metrics for each image, and
𝑛 represents the number of images.

Variance (Var) is used to calculate the difference between each
observation value and the Mean value, expressed as:

𝜎2 =
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

𝑛
, (19)

where 𝜎2 represents the variance.
Standard deviation (Std) can reflect the dispersion degree of a data

et and is the arithmetic square root of variance,

=

√

∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2

𝑛
. (20)

The smaller the Std is, the more stable the output of the network.
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When considering the minimum (Min) and maximum (Max), we not
only hope that they are as large as possible, but also rather more hope
that the gap between them, 𝛥, is not too large.

𝛥 = 𝑀𝑎𝑥 −𝑀𝑖𝑛. (21)

4.5. Main results

It is not practical to physically collect a large amount of LR-HR
pairs low-level brain MRI training data. We use Bicubic interpolation to
degrade BraTS slices by ×4 down-sampling, and add random Gaussian
noise to simulate low-level MRI in reality.

The experimental results of RIRGAN and four selected SR method
baselines on brain MRI dataset BraTS with noisy LR inputs are shown in
Table 2 and Fig. 6. We compared the proposed method RIRGAN with SR
methods: Bicubic interpolation, SRResNet (perception-driven method),
SRGAN (GAN-based method), and RDN (PSNR-oriented method), where
we use the same inputs as our RIRGAN, LR image with scale factor 4
and Gaussian noise.

4.5.1. Comparison in numerical objective metrics with SR methods
In Table 2, we randomly selected 175 brain MRI slice images and

calculated the mean PSNR and SSIM values of the output images
obtained by each selected baseline method relative to the ground-truth.
From Table 2, it can be seen that our proposed RIRGAN achieves the
best results in both PSNR and SSIM, i.e., it not only outperforms the
classic Bicubic, SRResNet, and SRGAN, but also achieves much better
results than the SOTA SISR baseline, RDN.

The reasons for RIRGAN’s superior performances of RIRGAN are
as follows: (i) the architecture of RIR-G realize the fully extraction of
different hierarchical features, through local residual learning, regional
residual learning, and global residual learning especially focusing on
the extraction of HF features; (ii) we replace the standard discriminator
with RaD, which can guide RIR-G to generate more details and textures;
(iii) the hybrid loss function in RIRGAN makes it more suitable for
low-level vision in medical images.

4.5.2. Comparison in visual perception with SR methods
Fig. 6 shows the visualized results of RIRGAN and the other four

baselines on BraTS together with ground-truth. Specifically, we first
find that the images processed by Bicubic are both blur and noisy, this
is because the interpolation method cannot remove the noise in low-
level medical image but simply enlarge the image to the corresponding
multiple; however, please also note that not achieving good super-
resolution results does not mean Bicubic is bad, actually, Bicubic and
other interpolation solutions also have many advantages and have
thus been widely used in many other research fields, e.g., domain
adaptation.

With the help of perceptual loss, the images obtained by SRResNet
and SRGAN add various texture details, but we can see from Table 2
that the brightness and structure of images are changed (reflected by
SSIM values), and in Fig. 6 the output image processed by SRResNet
and SRGAN contains grid artifacts, especially at the edges of the image.
This proves that perception loss based SR method and GAN based SR
method can improve the visual similarity, but they also lead to artifacts
that affect image quality [48]. Although RDN with complex feature
extraction module has already become the most advanced model in
the field of SISR in recent years, the output images of RDN that only
use pixel loss are blurry and losing some textures. This is because the
pixel loss in PSNR-oriented RDN contributes to both SR task and DN
task, but it will obviously lead to over-smooth, which is unacceptable
in low-level medical image processing. In Table 2, we can also clearly
see that the output image quality of the RDN is less stable than the
proposed RIRGAN, with more significant differences between images,
which makes it less applicable than RIRGAN in medical practices.

The output brain MRI of RIRGAN is the closest to ground-truth visu-
ally. The aforementioned content proves that even if the loss function
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Fig. 6. Visualized multi-task learning results for RIRGAN and the baselines using inputs of ×4 LR image and random Gaussian noise. With the help of pixel loss and perceptual
loss, SRResNet, SRGAN and RDN eliminate the noise in input images to some extent while completing the SR task, but with very poor effects; on the other hand, MTL-based
RIRGAN has much better visual effect.
Fig. 7. The multi-task learning results of RIRGAN and the SR baselines, which aim to reflect the models’ stability by measuring the quality of output images. We randomly selected
40 slices for testing and plotted the PSNR and SSIM values of the output images of each method. The higher the curve in the figure, the higher the Mean value, and thus the
better the output quality of the network. The closer the curve in the figure is to the horizontal, the better the stability of the network’s output. The results indicate that our
RIRGAN performs in both PSNR (a) and SSIM results (b), so the image quality generated by RIRGAN is both high and stable.
with the DN attribute (perceptual loss in SRResNet and SRGAN and
pixel loss in RDN) is included, the STL-based SR methods still cannot
complete MTL task effectively and commendably.

In fact, we know that the ground-truth image in BraTS contains
Speckle noise due to the acquisition instrument and other reasons.
Thanks to the existence of TV loss, our RIRGAN removes the random
Gaussian noise added to the input image, and at the same time, it also
removes the Speckle noise of the image itself to a certain extent. This
is because Gaussian noise and Speckle noise are both additive noise.
According to the additional experiments in Section 4.8, our RIRGAN is
sensitive to a certain kind of noise after training.

Compare with other SR methods, RIRGAN restores the potential
information contained in noisy LR inputs. While compare with ground-
truth, RIRGAN also plays a role in image enhancement for denoise of
Speckle noise.

4.5.3. Comparison of output stability with SR method
Similarly, to study whether the outputs of our RIRGAN are more

stable than other SR models when processing low-level brain MRI, we
further made a simple comparison to illustrate. In practical applica-
tions, we hope that the outputs of the model are not only effective but
also stable. In other words, the clinical application requires that the
model should ensure that the quality of each output image should be
generally maintained at a certain level, rather than some of the quality
is particularly good, while some are very poor.
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Fig. 7 shows the PSNR and SSIM values of 40 slices randomly
selected in noisy LR testing inputs after SR methods and RIRGAN
processing. We use the 40 images as a sample results to reflect the
overall effect. It can be seen from the PSNR results in Fig. 7(a) and
SSIM results in Fig. 7(b) that the red line representing RIRGAN is not
only at the top of the figure but also has less fluctuation compared with
other lines. To further and more accurately evaluate the stability of the
output of each model, we choose six indicators, namely, Mean, Var,
Std, Min, Max and 𝛥, shown in Table 2. They are the most important
measures that represent the trend of a group of data sets and are used
to describe the trend and dispersion of data sets.

Combining the results in both Fig. 7 and Table 2, we can see clearly
that, compared with the classic SR methods, Bicubic, SRResNet, and
SRGAN, and the SOTA SR baseline, RDN, in the multi-task learning of
low-level brain MRI, RIRGAN not only has good results on the mean
value of PSNR and SSIM, but also the quality of output image remains
at a relatively stable level, and the difference between image quality is
moderate, proving that the performances of RIRGAN is stable and high-
quality. In summary, these curves and values reveal the effectiveness
and stability of the proposed RIRGAN when handling low-level brain
MRI than other STL-based SR methods.

4.6. Ablation study

To indicate the effectiveness and necessity of the proposed three
improvement in RIRGAN (RIR-G, RaD and hybrid loss function for



Computers in Biology and Medicine 167 (2023) 107632M. Yu et al.
Table 3
Ablation studies on BraTS using scaling factor ×4, random Gaussian noise, and 200K updates, where the best results are bold.

Different combination of RIR-G, RaD and Hybrid Loss

RIR-G ✕ ✓ ✕ ✕ ✓ ✕ ✓

RaD ✕ ✕ ✓ ✕ ✓ ✓ ✓

Hybrid Loss ✕ ✕ ✕ ✓ ✕ ✓ ✓

PSNR

Mean↑ 26.04 25.84 25.26 27.14 27.35 23.50 28.17
Var↓ 10.05 11.78 9.963 17.52 10.60 16.84 3.452
Std↓ 3.171 3.432 3.156 4.186 3.256 4.103 1.858
Min− 14.80 16.51 17.09 14.30 18.36 13.53 21.12
Max− 32.07 32.25 31.44 33.74 32.47 32.30 31.62
𝛥 ↓ 17.27 15.74 14.35 19.44 14.11 18.77 10.50

SSIM

Mean↑ 0.8502 0.8131 0.8058 0.8538 0.8541 0.8175 0.8799
Var↓ 0.0025 0.0020 0.0026 0.0011 0.0008 0.0030 0.0006
Std↓ 0.0503 0.0449 0.0507 0.0327 0.0291 0.0548 0.0235
Min− 0.5367 0.3935 0.6798 0.7513 0.6406 0.5760 0.8129
Max− 0.9829 0.8605 0.9072 0.9172 0.8979 0.8895 0.9304
𝛥 ↓ 0.4462 0.4670 0.2274 0.1659 0.2573 0.3135 0.1175
Table 4
Different combinations of training input and testing input in different groups and purposes.

Group Training input Testing input Purpose

SR-only LR LR Whether RIRGAN trained by LR can complete the SR task
SR-test1 LR LR+noise Whether RIRGAN trained by LR can complete the DN task
SR-test2 LR+noise LR Whether RIRGAN trained by MTL can complete the STL task
MTL LR+noise LR+noise Whether RIRGAN trained by MTL can complete the MTL task
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MTL) when processing low-level vision of brain MRI, ablation studies
are further conducted, where several intermediate models that only
use one or two improvements. All the networks have the same feature
extraction basic block number (𝑁 = 8) and input images are (𝐼𝑙𝑟+𝑛).
The baseline is the SRGAN use 8 residual-blocks. We should be aware
that SRGAN is a proven training balanced GAN model, which means
that the generator and discriminator in SRGAN are matched.

We then add one of RIR-G, RaD or hybrid loss to the baseline,
resulting in the results from 2nd to 4th combination in Table 3, respec-
tively. The experimental results indicate that the use of RIR-G or RaD
alone cannot improve the numerical metrics. We believe that there are
several reasons for this: firstly, the improvement of GAN-based model
improves the perception quality of images, while PSNR and SSIM values
contradict with perception; secondly, after changing the generator or
discriminator alone separately will break the balance already formed in
SRGAN, that is, a powerful generator requires a mighty discriminator to
work with it. The hybrid loss, which is specially designed for low-level
vision in medical image, enables the network achieve MTL. Therefore,
when processing complex inputs, even using hybrid loss alone can
significantly improve the performance of the network. This thus proves
that it is reasonable to introduce MTL in low-level medical image
vision.

We further add two components to the baseline, resulting in the
results from the 5th and 6th combination in Table 3 respectively. It
can be seen that use RIR-G + RaD would perform better than only one
of them. This is because after using a complex block, a more powerful
discriminator is needed to guide the generator to make better use of the
extracted features, and RaD has done this well, which proves the RIR-G
and RaD are matched and effective in low-level medical image vision.
When RIR-G + hybrid loss components added to baseline, under the
same training settings, the results show a great decline. We inspected
each output image, and found that the network output is very unstable,
some image quality is particularly good, while some are very poor. This
proves that our generation task is too difficult compared to the SR or
DN task of STL. Without the guidance of a powerful discriminator, the
generator falls into a local optimum. This result is consistent with the
conclusion in 2nd and 5th columns in Table 3.

Careful people will find that there is a case missing from the
two components in Table 3, RaD + hybrid loss. When RaD + hybrid
loss components added to baseline, under the same training settings,
discrimination loss of the network will quickly drop to 0. This is
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ecause RaD is too powerful compared with the generator at this time,
eading to the network mode collapse. This results can also be mutually
onfirmed with the results in 3rd and 5th columns, that is, the abilities
f the generator and discriminator need to match with each other. It
lso proves that GAN is difficult to train.

When we use these three components simultaneously forms our
IRGAN, and it performs the best in Table 3. The experiment of
blation study proves that the three improvements of RIRGAN are all
ffective when processing low-level medical images, and the effects
re the best when the three improvements cooperate with each other.
his is because the additional bypath connection in RIR-G can enhance
he deep model’s feature learning capability by obtaining different
ierarchical features. RaD can guide RIR-G use the multi-hierarchical
eatures to generate higher quality images. And the hybrid loss function
nables the network to achieve MTL, which improves the performance
f the network by tackling SR and DN problems, and gets more effective
nd robust images. Therefore, the above observations demonstrate that
he proposed three improvements are all effective and essential to
chieve the superior quality medical image.

.7. Effectiveness of RIRGAN for different tasks

Further experiments are conducted to verify the effectiveness of
TL. Let us take a look at the performance of RIRGAN in different

ombinations of training and testing sets through this part, shows
n Table 4 and Fig. 8. We divided the input into two types: one is
he degradation images with ×4 down-sampling by Bicubic called LR

(shows in Fig. 8(a)), the other type is to add random Gaussian noise to
the LR, which we called it LR+noise (shows in Fig. 8(b)). According to
the different combination of training input and testing input, we divide
the experiments into four groups, and set Table 4 for details.

The first group, we call it SR-only, uses LR as training input, we
find that the network converges very fast, which only needs about
100k iterations. The testing input in SR-only is also LR, and the SR-
only visual result is shown in Fig. 8(e). This kind of input was same
with the ordinary STL SR method. Put it another way, the experiment
of the SR-only group is used to test whether RIRGAN could complete
STL. The output of the SR-only group has a good visual effect compared
to the baseline Bicubic with LR input, but a low PSNR value and the
brightness is also significantly different from GT, which proves that
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Fig. 8. Visualized results of the effectiveness of multi-task learning in PSNR. Bicubic is selected as the baseline.
Table 5
The robustness of RIRGAN to additive noise and salt & pepper noise with different iterations in multi-task learning. RIRGAN converged by
training with additive noise for 200k iterations, but salt & pepper noise needs more training iterations, which indicates that salt & pepper noise
is more difficult to handle than additive noise.

Kinds Additive Salt & Pepper Salt & Pepper

Noise Gaussian Speckle Localvar S&P Salt Pepper S&P Salt Pepper

Iteration 200k 200k 200k 200k 200k 200k 350k 350k 350k
PSNR 28.23 28.67 28.19 24.69 24.70 24.67 27.07 27.16 27.04
SSIM 0.8809 0.8965 0.8808 0.8837 0.8841 0.8838 0.8962 0.8957 0.8956
our RIRGAN can complete the STL task as a perception-driven, but the
effect is not PSNR-superior.

The second group we named it as SR-test1, which uses LR as
training input and use LR+noise as testing input, and the output result
shows in Fig. 8(f), which is not a meaningful output. It proves that a
model without noise training could not complete the task of DN.

The third group is called SR-test2, which we use the training input
of LR+noise and testing input of LR. The purpose of this experiment
is to verify whether RIRGAN trained by MTL can complete the STL
task. The results in Fig. 8(g) achieves a high PSNR value, but a blurred
image. This result is similar to the original PSNR-oriented SR method,
which obviously does not meet the requirements of medical practical
applications.

The fourth group is MTL group, using LR+noise as both training
input and testing input, which is the training method we proposed in
Section 4.5. The image in the MTL group shows in Fig. 8(h) which
balanced the visual effect with numerical values of metrics.

From the four groups of comparative results, we can see that RIR-
GAN can effectively complete the SR task (both PSNR-oriented and
perception-driven) through different combinations of training input and
testing input. Comparing the results of SR-test2 and MTL group, we
find that RIRGAN after trained by LR+noise input, when processing
LR testing input, model tends to produce overly smooth output (shows
in Fig. 8(g)). Although the PSNR value of this blurred image may be
high, compared with ground-truth (GT, shows in Fig. 8(d)), it obviously
loses various details and causes distortion. When the testing input is
LR+noise, the output image (shows in Fig. 8(h)) contains realistic tex-
tures and details, which prove the effectiveness of MTL. Furthermore,
the SR-test2 and MTL group experiments prove that the pre-trained
RIRGAN model obtained through noisy LR inputs can handle multiple
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tasks: SR (SR-test2 group) and SR+DN (MTL group). These two groups
of experiments also demonstrate that the MTL based model has high
generalization ability.

4.8. Robustness to different kinds of noise

Similarly, to investigate the influence of different kinds of common
noise, additive noise and salt&pepper noise, on the performance of
RIRGAN, experiments are further conducted, and the results are shown
in Table 5.

Generally, when processing additive noise, we use LR image (down-
sampling to factor 4) with random Gaussian noise to train RIRGAN,
then use the trained model to process different types of additive noise:
Gaussian, Speckle, Localvar. In Table 5, we can see that RIRGAN works
well on different kinds of additive noise. When handling salt&pepper
noise, the model which pre-trained by Gaussian noise cannot be directly
used to remove salt&pepper noise, so it is necessary to re-train the
network with salt&pepper noise. When trained 200k iterations, the
model has not converged and the image denoising effect is not ideal.
Therefore, we continue to train the model to 350k iterations and
achieved relatively satisfactory results.

After analyzing the reason, we find that additive noise did not
change the pixel value of the original image, only superimposed dif-
ferent noise on it. But salt&pepper noise is a kind of impulse noise.
Salt noise will randomly change the original pixel value to a white dot,
while pepper noise will randomly change the original pixel to a black
dot. Because salt&pepper noise changes the pixel value of the original
image, it is more difficult for the network to process salt&pepper noise
than additive noise. Meanwhile, the images in BraTS itself contain
a small amount of additive noise, and then add salt&pepper noise,
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Fig. 9. Visualized results of multi-task learning RIRGAN and single task learning SR and DN methods. The experimental inputs of SR methods are LR images (down-sampling to
factor 𝑠 = 4), and the inputs of other methods are all LR images with random Gaussian noise. Since the DN model has no amplification function, we will magnify the results after
processing the DN model to the same size as GT using Bicubic interpolation. The zoomed-in regions marked by the red circle are embedded in the original image to show the
details of the output.
Table 6
Quantitative results of multi-task learning RIRGAN and single task learning SR and DN methods in terms of PSNR, SSIM, and qualitative
comparative metric, MOS. Best results are marked bold.

Method Bicubic SRResNet SRGAN RDN RIRGAN MF NLM BM3D DnCNN

Input LR LR LR LR LR+noise LR+noise LR+noise LR+noise LR+noise
Task SR SR SR SR MTL DN DN DN DN
PSNR 25.48 25.40 25.65 29.92 28.05 26.54 24.57 26.30 27.19
SSIM 0.8950 0.8762 0.9140 0.9293 0.8792 0.8240 0.8323 0.8373 0.8856
MOS 1.207 3.187 3.810 2.837 4.183/4.921 1.693 3.418 2.746 2.154
making the model processing more complex. When the input images of
RIRGAN are brain MRI with salt&pepper noise, the pixel information of
the input images itself has changed due to the influence of salt&pepper
noise. After 350k iterations of training on salt&pepper noise input,
RIRGAN can already recover the structural information of the images
well (reflected by SSIM values), but the restoration of pixel information
in the image is not as good as that of additive noise (reflected by PSNR
values). Therefore, the experimental results show that the model needs
more time to process salt&pepper noise than additive noise.

Whether for additive noise or salt&pepper noise, RIRGAN can re-
move this type of noise only by training once, which proves that
RIRGAN has strong robustness to different kinds of noise. The exper-
iment also proved that the MTL based model has high generalization
ability.

To verify whether our RIRGAN can simultaneously handle two
different types of noise, we conduct a new experiment. The new ex-
perimental input adds random Gaussian noise and salt&pepper noise
with down-sampling to factor 4, which makes the input of the network
more complex. According to our experiment, this overly complex input
has caused confusion in our network. The model needs to complete
three complex tasks simultaneously: SR, DN, and noise classification.
Unfortunately, our model does not yet have the ability to complete this
task.

4.9. Comparative results with SR methods

On Section 4.5, we use noisy LR brain MRI as input to compare RIR-
GAN with SR models, and achieved superior results. But RIRGAN is an
MTL model, while these SR methods are STL models. The complex input
seems unfair to STL SR methods. To further evaluate the performance
of RIRGAN, we conducted new experiments. To be fair, we change the
inputs of four SR methods with an LR image only, while the inputs of
RIRGAN are still noisy LR image.
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In Fig. 9 and Table 6, perception-driven SRResNet and GAN-based
SRGAN can achieve good visual effects, but they will lead to the decline
of PSNR and SSIM, and produce undesirable artifacts (grids, patches,
etc.). The PSNR-oriented RDN use pixel loss only will lead to over
blurring, but best results in PSNR and SSIM score. While our RIRGAN
gets the second best result in PSNR. However, it is worth noting that
RDN still has unstable image output quality in SR experiments. Some
images have poor recovery on black backgrounds and where contrast
is sharp, which severely imposes the doctor’s sense of experience.

We know that a high PSNR and SSIM value will cause the output
image to be too smooth, which is completely inconsistent with visual
perception [24]. In real medical applications, physicians often focus on
the visual effect of medical images. To alleviate this issue, we choose
mean opinion score (MOS) as the evaluation index of human subjective
perception, which can more realistically reflect the similarity between
model results and ground-truth from several aspects, such as brightness,
artifacts, details, etc. MOS is a commonly used subjective image quality
assessment (IQA) method. MOS assesses the quality of samples by
randomly selecting some pairs of ground-truth samples and generated
samples, and scoring them manually by several people. Although the
MOS seems a faithful method for evaluating the quality of SR images,
it has some inherent defects. Owning to the difference in each person’s
experience and the difference of attention to different features of image
may affect the evaluation results, the score of MOS is often different
from person to person. However, MOS needs to consume numerous
human cost, economic cost and time cost, which is only applicable to
small sample sets in practical. Nevertheless, MOS is considered being
the most reliable IQA method for accurately measuring perceptual
quality [53].

The MOS value in our experiment is based on 20 randomly selected
images from the testing set. Each image was processed by Bicubic,
SRResNet, SRGAN, RDN and RIRGAN, and then 15 people were invited
to give a full blind scores 1 (bad) to 5 (good) for 20 groups of images
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in a disordered order. These 15 evaluators are either radiologists with
more than three years’ clinical experience from the Department of
Radiology, Hainan Women and Children’s Medical Center, China, or
master/Ph.D. students with more than two years research experiences
in the areas of medical image processing from the School of Health
Sciences and Biomedical Engineering, Hebei University of Technology,
China. Therefore, their clinical or academic training and experience in
the field of medical image analysis make them have sufficient ability
to distinguish the quality of MRI images. We calculated the final MOS
value as the arithmetic average over all 300 ratings.

From the PSNR, SSIM, MOS results shown in Table 6 and the
visualized results shown in Fig. 9, we can see that SRResNet and SRGAN
can generate pleasant texture details under the help of perceptual loss,
but they also bring in lots of artifacts and noise, which makes the
output images appear to be unclean. Although RDN has the highest
PSNR and SSIM values, its visualized results is lacking of necessary
high frequency texture details, making it seems to be very blurring.
And our proposed RIRGAN has achieved the best balance between
the quantitative performances in PSNR and SSIM and the qualitative
visualization results to satisfy the human vision. Therefore, our model is
more in line with the requirements of doctors in practical applications.

4.10. Comparative results with DN methods

Although our RIRGAN is not a specially designed DN model and the
DN is only the related auxiliary task for SR, we still carried out exper-
iments comparing with DN methods: Median Filtering (MF, nonlinear-
smoothing-based method) [54], Non-Local Means (NLM, non-local-
based method) [55], Block Matching 3D (BM3D, image-block-matching-
based method) [56] and DnCNN (deep-learning-based method) [57].
All these methods are proved to be effective DN methods.

In the comparison experiments with DN group, we did not choose
to denoise the original size image directly, because the large size image
(128 × 128) contains much more information than the small size image
32 × 32), which lacks fairness for our RIRGAN. To ensure that the
ize of DN network input and output images is consistent with our
IRGAN, we use LR+noise brain MRI slices as inputs. That is to say,

he inputs of the DN group are the same with RIRGAN. And we enlarge
he output images obtained by DN methods using Bicubic to ensure the
ize of output images is consistent with the ground-truth. The reason
hy we use the Bicubic interpolation instead of the more powerful
R methods, e.g., SRGAN and RDN, for enlargement is as follows:
RGAN and RDN are deep-learning-based generative SR methods, so
hey not only have the ability to enlarge images, but also have the
apability to improve and repair the qualities of images, i.e., they also
ave certain denoising ability with the help of their losses (e.g., per-
eptual loss for SRGAN and pixel loss for RDN); however, the purpose
f this experimental study is not to obtain the best output images
ut to compare the different denoising capability of RIRGAN and the
xisting DN methods; therefore, using deep-learning-based generative
ethods, e.g., SRGAN and RDN, for enlargement, will further narrow

he difference in image quality generated by different DN methods
i.e., the generated images will no longer reflect the results of using
hese DN methods for denoising, but the results of using them and
lso RDN or SRGAN for two-stage denoising), and thus bring bias in
omparing their denoising capability; consequently, here we choose
icubic, which is an interpolation-based method without denoising
apability, to preserve the quality differences between output images as
uch as possible when enlarging them and avoiding comparative bias.

inally, please note that this setting is only to obtain more intuitive
nd clearer comparison in denoising experiments in this subsection;
ctually, using SRGAN and RDN for two-stage denoising will definitely
btain better-denoised images than using Bicubic, so they are better
hoices in clinical practices if having sufficient computing facilities.

The PSNR, SSIM and MOS values are obtained in the same way as
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hose described in the SR group in Section 4.9. The results are also
Table 7
The performances of RIRGAN using different number of blocks and parameters in SR
and DN multi-task learning.

Method Block Params PSNR SSIM

RIRGAN 𝑁 = 8 3.3M 28.26 0.8833
RIRGAN∗ 𝑁 = 10 4.1M 22.89 0.8199

Table 8
The impact of the number of parameters on the performances of RIRGAN in SR
single-task learning.

Block 𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

Params 1.1M 1.8M 3.3M 6.3M 12.2M
PSNR 17.10 18.42 24.44 24.55 23.71
SSIM 0.6002 0.6203 0.8667 0.8992 0.7898

shown in Table 6 and Fig. 9. From the results of Table 6 and Fig. 9,
we can see that the DN methods with small size input are difficult
because very little pixel information can be provided for model to learn.
Furthermore, what we cannot deny is that the impact of image blurring
caused by Bicubic amplification on DN group results. But we still
believe that our RIRGAN has achieved good results in the restoration
of low-level vision brain MRI.

4.11. The impact of parameter reduction on the performances of RIRGAN

Additional experiments are conducted to investigate the impact of
parameter reduction on the performances of RIRGAN. We first increase
the number of blocks of RIRGAN from N = 8 to N = 10 in multi-task
learning, which thus increases the number of parameters from 3.3M
to 4.1M. As shown in Table 7, the performances of RIRGAN∗ with
N = 10 are surprisingly worse than those of RIRGAN with N = 8. This

ay be because more trainable parameters lead to more challenges in
ptimization and make the model feasible in over-fitting [31]; since
ulti-task learning is more complex than single task learning, increas-

ng the number of blocks and parameters of RIRGAN make it more
ifficult to achieve a balance between generator and discriminator.

Then we also investigate the impact in single-task learning of super
esolution (SR), where the inputs of training are LR medical images
ithout additional noise and the noise-based total variation (TV) is thus

emoved from RIRGAN (setting its weight to 0). As shown in Table 8,
ith the increase of RIR-Blocks, the number of parameters of RIRGAN
lso increases consistently; however, the super-resolution performances
f RIRGAN first increases from N = 2 to N = 16, but decreases from

N = 16 to N = 32. This thus proves our argument again that increasing
the number of blocks and parameters of RIRGAN makes it more difficult
to achieve balance between generator and discriminator, so it does not
always results in the rise of performance. In addition, by comparing
the performances results of RIRGAN in N = 8 and N = 16, we notice
that by doubling the number of parameters, the performance increase
is not significant, especially for PSNR. Consequently, according to the
results in Tables 7 and 8, we believe that the increase of parameter
will not result in significant performance improvements for RIRGAN,
so setting the number of blocks to N = 8 not only light-weights the
model but also achieves satisfactory performances in both multi-task
and single-task learning scenarios.

5. Discussion

The proposed end-to-end lightweight MTL model, RIRGAN, which
can concurrently accomplish low-level medical image vision in both SR
and DN tasks. This means that when facing clinical noisy LR images,
there is no longer to improve resolution and definition, respectively.
Through our experiments, RIRGAN has been proven to be able to

complete the restoration of low-level vision brain MRI.
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5.1. Social impact of RIRGAN

RIRGAN can be widely used in a lot of clinical scenarios. In some
image centers, there are some older medical data that have poor image
resolution and high noise due to various reasons in the process of col-
lection, storage, transmission, etc. The application of our RIRGAN can
help restore these medical image data. In underdeveloped remote areas,
due to economic limitations and hardware costs of image acquisition
equipment, MRI images may not be able to display detailed information
of patient lesions. By applying our proposed RIRGAN to such clinical
practice, doctors can obtain images with more detailed information.

Clear and high-quality images can effectively reduce the workload
of doctors and improve the efficiency and accuracy of medical im-
age segmentation. We take an MRI assisted cancer diagnosis as an
example, where doctors need to accurately delineate the outline of the
tumor area on 3D MRI images of patients composed of hundreds of
slices as the target area. Under such a large workload, if the image
quality is very low, the whole image segmentation process is very time-
consuming and laborious, which can easy to cause misdiagnosis. By
applying our proposed RIRGAN in such clinical practices, the medical
image quality will be improved and the segmentation task will be
easier.

5.2. Limitations and future works

Similar to the existing SISR methods, RIRGAN also experiences
information loss in areas where image edges and pixels change dramati-
cally. So an interesting future research is to find a new loss function that
can pay special attention to the areas with sharp pixel changes, so as to
improve the network’s ability in generating such areas. As a supervised
regression task, RIRGAN requires a large amount of data for training,
but the number of high-quality images in medical practice is lim-
ited. We can seek some semi-supervised [58] and self-supervised [59]
methods to improve our model.

Despite achieving good performances in either additive noise or Salt
& Pepper noise, our experiments also find that the performances of
the proposed RIRGAN significantly degrades when both types of noises
are added. We believe this problem may be due to the limitation of
the noise-related loss, i.e., the total variation (TV) loss. Specifically, as
stated in Section 3.4. and the existing TV loss related works [17,50], TV
loss is a regularization loss item aiming to enhance the image’s spatial
smoothness and reduce noise. As a regularization loss, the weight of
TV loss has to be set to a relatively small value, otherwise the auxiliary
task (i.e., the denoising task in our work) will overwhelm the main
task (i.e., the super-resolution task) and negatively affect the model’s
performances in the main task; however, setting its weight to a small
value inevitably limits the model’s denoising capability, making it
unable to handle complex noises well. Consequently, we will continue
to investigate how to further improve RIRGAN to achieve satisfactory
performances under complex and multi-type noise circumstances in fu-
ture research works. A Potential research direction may be introducing
other kinds of denoising loss and discovering appropriate loss weight
combinations to help model achieve good performances in both SR and
DN tasks.

6. Conclusion

In this paper, we proposed an end-to-end lightweight MTL model,
RIRGAN, which can do SR and DN multi-task learning of low-level
medical image vision simultaneously. Compared to the SISR methods
based on STL, our RIRGAN has achieved good results in both quan-
titative evaluation of numerical metrics and qualitative evaluation of
human vision. Specifically, the technical improvements of RIRGAN are
threefold. First, RIR-G with SSC, LSC and GSC improves the hierarchical
feature extraction ability, allowing our RIRGAN to reach a deeper
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network than SRGAN easily with a smaller number of parameters
and focus on learning high-frequency information of medical images.
Second, we use RaD to replace the original discriminator loss, which
can judge whether an image is more realistic than another one, greatly
improving the stability and accuracy of our model. Third, the use of
hybrid loss function enables RIRGAN to achieve MTL of SR and DN, and
to focus on different performance of images in a more balanced way, so
as to achieve a more robust MTL effect. All these improvements make
our RIRGAN different from the current popular STL models for SR and
DN tasks.

Our experimental studies first show that RIRGAN not only achieves
better performances than the classic SR methods, Bicubic, SRResNet,
and SRGAN, but also outperforms the state-of-the-art SISR baseline,
RDN, in multi-task learning. Then, we randomly select 40 images
and show that the quality of high-level medical images generated
by RIRGAN is more stable than the baselines. Ablation studies are
also conducted to show that all the above improvements of RIRGAN
are effective and essential for the RIRGAN to achieve the superior
performances. Finally, Some additional experiments are also conducted
to show that the multi-task learning results of RIRGAN are comparable
with the single task learning results of the baselines and the parameter
reduction in RIRGAN will not bring significant performance loss. All of
these experimental results sufficiently prove the superiority and stabil-
ity of the proposed RIRGAN in the tasks of Brin MRI super-resolution
and denoising.
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