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A B S T R A C T

Although the existing deep supervised solutions have achieved some great successes in medical image
segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained
by very different convolution or deconvolution processes, the intermediate masks and predictions in deep
supervised baselines usually contain semantics with different depth, which thus hinders the models’ learning
capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the
training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised
learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve
the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised
segmentation model, called 𝜇-Net, to achieve not only effective but also efficient deep supervised medical image
segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information
and also speed up the convergence in training. Finally, three different types of 𝜇-Net-based deep supervision
strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research
in deep supervised learning. Experimental studies on four public benchmark datasets show that 𝜇-Net greatly
outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation
models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the
proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder,
and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.
1. Introduction

With the development of deep learning, deep-learning-based meth-
ods have been increasingly used in computer-aided medical diagno-
sis [1,2]. Medical image segmentation based on deep learning is one
of the most important tasks [3], which aims to recognize and annotate
the regions of interest (e.g., organs and lesions) with masks and/or
outlines. U-Net [4] is one of the most popular deep-learning-based med-
ical image segmentation techniques. It consists of a contracting path
(encoder) to extract deep features from the input images, an almost
symmetric expansive path (decoder) to achieve a precise localization,
and skip connections to recover detailed image information lost during
the down-sampling process [5]. Recent works have witnessed the ap-
plication of U-Net in various medical image segmentation tasks, such
as segmenting brain tumors [6,7], cardiac [8], liver [9], breast [10],
and retinal vessels [11].
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To improve the segmentation performance of U-Net, many existing
works [12–14] propose to add additional supervision signals on the
expansive path of U-Net to enforce direct and early supervision for
both the intermediate layers and the output layer [15]. In [12,13],
these works add a side output to each layer of the extensive path,
i.e., directly up-sample the feature maps obtained by each layer to the
target size by deconvolution, and then an additional intermediate loss
is calculated in comparison with the ground truths; consequently, the
model is trained based on a deep hybrid learning loss, obtained by
summing up the intermediate losses on each expansive layers. In [14],
it simply down-scales the ground truths to generate intermediate masks
(i.e., applies max-pooling with fitting kernel size and stride to match
the feature map’s spatial extent) and then computes additional inter-
mediate supervision losses by comparing the intermediate masks with
the intermediate predictions at each layer of the expansive path.
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However, most of the existing deep supervised segmentation models
encounter two same shortcomings as follows. (i) Semantic difference
problem: Since the intermediate masks and the intermediate predic-
tions used to estimate the intermediate losses in these methods are
normally obtained by very different convolution or deconvolution pro-
cesses, they usually contain semantics that belongs to different depths;
consequently, directly comparing them to estimate intermediate losses
for deep supervision may be arguable inappropriate, which will make
the intermediate loss signals contain inaccurate guiding information,
and thus not only limit the model’s learning capability but also weaken
the learning efficiency [16–18]. (ii) Low learning efficiency problem:
Introducing additional intermediate learning signals can bring deep
supervision with richer semantics into the learning process of segmen-
tation models, and thus improve the model’s segmentation accuracy to
some extent; however, the additional supervision signals will be very
likely to make the training of the models more time-consuming; the
reason is as follows: by introducing additional intermediate learning
signals, the time-cost of each training epoch of the deep supervised
models will be significantly increased (due to the additional operations
in the feed-forward process and the more complex objective function in
the backpropagated optimization process), while the number of training
epochs needed for the deep model to converge will also increase (in
most cases) or remain similar (in even best case); so both factors work
together will dramatically increase the total training time-cost in most
scenarios.

Consequently, to overcome the above problems of the existing
deep supervised segmentation models, in this work, we first propose
two deep-supervised learning strategies of U-Net, U-Net-Deep and U-
et-Auto, to overcome the semantic difference problem and achieve
eep supervision without any modification to the structure of U-Net.
hen, we further propose a deep-supervised variant of U-Net, called
-Net, which can resolve both the semantic difference and the low

earning efficiency problems to achieve more accurate deep-supervised
edical image segmentation with much lower training time-cost than

he existing deep-supervised segmentation methods.
Specifically, we first propose U-Net-Deep, which is a simple but

ffective deep-supervised learning strategy of U-Net. U-Net-Deep re-
uires no modification to the structure of U-Net, but simply adds
n additional feed-forward step, which takes the segmentation mask
i.e., the ground truth) as the additional input of U-Net to generate
ntermediate feature maps at each layer of the expansive path as
he intermediate pseudo-labels; consequently, U-Net-Deep additionally
mports intermediate losses that measure differences between the in-
ermediate pseudo-labels and the corresponding intermediate feature
aps generated at the same layer of the expansive path using the
edical image as inputs (called intermediate outputs for short) to achieve
-Net-based deep-supervised learning. Our experimental studies show

hat U-Net-Deep is not only simpler but also more effective than the
xisting deep-supervised variants of U-Net. We believe its effectiveness
omes from its capability in resolving the semantic difference prob-
em: the intermediate pseudo-labels of U-Net-Deep are obtained by
onvolution and deconvolution procedures that are identical to their
orresponding intermediate outputs, making them contain the same
epth of semantic information, so U-Net-Deep can estimate the inter-
ediate losses more accurately than the baselines whose intermediate

utputs and intermediate labels have semantic differences.
Despite resolving the semantic difference problem, we believe that

he intermediate pseudo-labels generated by U-Net-Deep are still not
erfect. This is because, although they are both images, the learning
f medical images and segmentation masks in U-Net-Deep actually
elongs to two different tasks: for medical images, the model aims to
omplete a segmentation task where the outputs are usually different to
he inputs; but when using segmentation masks as inputs of U-Net, the
odel aims to generate outputs that are the same as inputs, which is

ctually a reconstruction task [19]. Consequently, we further propose
2

nother deep-supervised learning strategy of U-Net, U-Net-Auto, which
uses an independent autoencoder (whose structure is almost the same
as that of U-Net, except for the lack of skip connections) to accomplish
the reconstructive learning process of segmentation masks and ob-
tain intermediate pseudo-labels (at the decoder) for deep supervision.
Experimental studies show that U-Net-Auto consistently outperforms
U-Net-Deep, we believe this is because of the following two reasons:
(i) the autoencoder in U-Net-Auto have almost the same structure as
U-Net, making the generated intermediate pseudo-labels still have the
same depth of semantics as the intermediate outputs; and (ii) use task-
specific models U-Net and autoencoder to process the input images and
labels respectively can help the obtained intermediate pseudo-labels
and intermediate outputs keep diverse features and accommodate with
their own tasks.

Although U-Net-Deep and U-Net-Auto properly resolve the semantic
difference problem, the low learning efficiency problem has not been
fully addressed yet. Our experimental studies show that by resolving
the semantic difference problem, U-Net-Deep and U-Net-Auto not only
can enhance and increase the models’ feature learning capability and
achieve much better segmentation performances, but the numbers of
training epochs needed for their model convergences are also lower
than those of the existing deep supervised methods; however, since
U-Net-Deep and U-Net-Auto require to take two inputs, their average
time-cost for each training epoch is higher; consequently, when the
increase of the latter overwhelms or is similar to the decrease of
the former, the total training time-cost of U-Net-Deep may be similar
or even higher than the existing deep supervised methods. To fully
resolve the low-efficiency problem, we further propose an efficient and
accurate deep supervised segmentation model, 𝜇-Net, to dramatically
further decrease the numbers of convergence epochs and ensure that
the decrease of epochs is always much higher than the increase of time-
cost per epochs; consequently, 𝜇-Net will have much higher efficiency
than the existing deep supervised models, and thus fully resolve the
low-efficiency problem.

Generally, 𝜇-Net proposes to share the same encoder for both U-
et and autoencoders, but retain the different decoders for them,
here the decoder of the autoencoder is a tied-weight decoder [20],

.e., the weight matrices in the decoder are the transposes of those in
he encoder. Consequently, 𝜇-Net has the following two advantages:

(i) Sharing the same encoder for both U-Net and autoencoder makes
the generated intermediate masks not only have the same depth of
semantics with the generated intermediate outputs, but they also rely
on the same group of learned features (i.e., the same encoder), while
retaining different learning processes in decoders according to different
tasks. Consequently, 𝜇-Net not only resolves the semantic difference
problem, but its intermediate masks and intermediate outputs also
own consistency in feature learning and diversity in image restoration
and prediction, which thus makes its deep supervisions more accurate
and effective. (ii) The usage of tied-weight makes the decoder of
autoencoder actually share the same weights with the encoder, which
thus greatly alleviates the vanishing gradient problem and speeds up
the model’s convergence; therefore, 𝜇-Net is capable to resolve the
low learning efficiency problem and achieve efficient deep supervi-
sion. Specifically, given an input image and its corresponding label
as the inputs, the intermediate outputs of input images are obtained
at each layer of the U-Net’s decoder; however, we can obtain two
groups of intermediate pseudo-labels: one group is generated at the
segmentation decoder of U-Net (thus called segmentation pseudo-labels),
while the other is generated at the reconstruction decoder of au-
toencoder (thus called reconstruction pseudo-labels). Consequently, there
exist three kinds of deep supervision strategies for 𝜇-Net: (i) using
solely segmentation pseudo-labels for deep supervision, denoted 𝜇-Net-
eg ; (ii) using solely reconstruction pseudo-labels for deep supervision,
enoted 𝜇-Net-Rec; and (iii) using both for deep supervision, denoted
-Net-Hyb.

Our experimental studies show: (i) 𝜇-Net-Hyb achieves the best
performances, which proves that the segmentation and the reconstruc-

tion pseudo-labels are beneficial for deep supervised learning, they
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can complement each other to achieve superior performances. (ii) 𝜇-
Net-Rec generally outperforms 𝜇-Net-Seg; we believe this is due to
the same reason why U-Net-Auto achieves better performances than
U-Net-Deep; consequently, according to these observations, we thus
summarize a Similarity Principle of Deep Supervision to measure
the quality of the intermediate learning signals used in deep supervised
models. Specifically, the Similarity Principle of Deep Supervision can
be described as follows. To obtain good intermediate learning signals,
the intermediate masks (i.e., pseudo-labels) and their corresponding
intermediate outputs (i.e., side outputs) should be generated using
similar but NOT identical convolution and deconvolution procedures
(i.e., the same number of operations but using different convolution
and/or deconvolution layers); we believe this will ensure the interme-
diate masks and intermediate outputs contain semantics at the same
depth (thus avoid the semantic difference problem) and will also help
them learn more diverse and task-specific features than directly using
identical convolution and deconvolution procedures to obtain them.
Finally, please note that, to keep it simple, we use U-Net as the
backbone in our methodology, however, 𝜇-Net is a highly adaptable
and scalable solution that can be applied to all U-Net-based advanced
segmentation models, e.g., U-Net++ [17] and Attention U-Net [21], to
achieve better segmentation performances.

The main contributions of this paper are briefly as follows:

• We identify the semantic difference and low learning efficiency
problems of the existing deep supervised segmentation methods.

• We first propose two deep supervised learning strategies, U-
Net-Deep and U-Net-Auto, to overcome the semantic difference
problem. Then, to resolve the low learning efficiency problem,
upon the above two strategies, we further propose a new deep su-
pervised segmentation model, called 𝜇-Net, to achieve not only ef-
fective but also efficient deep supervised medical image segmen-
tation by introducing a tied-weight decoder to generate pseudo-
labels with more diverse information and also speed up the
convergence in training. Finally, three different types of 𝜇-Net-
based deep supervision strategies are explored and a Similarity
Principle of Deep Supervision is further derived to guide future
research in deep supervised learning.

• Experimental studies on four public benchmark datasets show
that 𝜇-Net greatly outperforms all the state-of-the-art baselines,
including the state-of-the-art deeply supervised segmentation
models, in terms of both effectiveness and efficiency. Ablation
studies sufficiently prove the soundness of the proposed Similarity
Principle of Deep Supervision, the necessity and effectiveness of
the tied-weight decoder, and using both the segmentation and
reconstruction pseudo-labels for deep supervised learning.

The rest of this paper is organized as follows. Literature reviews
are included in Section 2, while the details of 𝜇-Net are introduced
in Section 3. Section 4 then presents the experimental studies and
evaluates the supremacy of 𝜇-Net and the soundness of the proposed
Similarity Principle of Deep Supervision. Finally, we conclude the paper
and discuss potential future works in Section 5.

2. Related work

Medical Image Segmentation. With the development of deep learn-
ing, more and more deep models are successfully applied to medical
image segmentation [22]. FCN is the first end-to-end image segmen-
tation model using convolutional neural networks [23]; FCN-based
medical image segmentation is mainly achieved by first using convo-
lution and pooling operations for feature learning and then applying a
transpose convolutional up-sampling-based skip architecture for pixel-
level classifications [24,25]. To obtain a more refined segmentation,
U-Net is further proposed to upgrade FCN to a structure with symmet-
rical contracting (down-sampling) and expansive (up-sampling) paths,
3

and skip connections are also used in U-Net to concatenate the deep
and coarse features in the expansive path with the shallow and fine
features in the contracting path for more accurate and detailed seg-
mentation [4]. U-Net is arguably the most widely adopted deep model
for medical image segmentation; recent works witness the application
of U-Net in various segmentation tasks, such as brain tumor [6,7],
cardiac [8], liver [9,13], and retinal vessel [11,26] segmentation.

To further improve the segmentation performance, many advanced
variants of U-Net are proposed in recent works [18,27,28]. Attention U-
Net is proposed in [21] to segment the pancreas on CT images, where
attention gates [29] are integrated into the expansive path to suppress
the response of irrelevant background information and enhance the
sensitivity of the pancreas features via assigning different weights.
ResUNet++ [30] is proposed for colonoscopic image segmentation,
where three improving techniques (i.e., residual connections, attention
mechanism, and atrous spatial pyramidal pooling) are incorporated
into U-Net to enhance the segmentation performance. To show the su-
perior performance of 𝜇-Net in medical image segmentation, these
state-of-the-art medical image segmentation techniques, i.e., FCN [23],
U-Net [4], Attention U-Net [21], and ResUNet++ [30], are selected as
the baselines in our work.
Deep Supervised Segmentation. To improve the segmentation per-
formance of U-Net, deep supervision was adopted in many existing
works [31–34], which add additional supervision signals on the hidden
layers of U-Net to enforce direct and early supervision for both the hid-
den layers and the output layer [15]. An edge-aware mechanism [35]
was proposed to segment retinal vessels on fundus images, where the
fused outputs of four side-output layers from both the contracting and
the expansive path are used to compare with the ground truths to
calculate auxiliary losses to help the networks converge. U-Net++ [17]
introduced a deep supervision technique to achieve a better perfor-
mance based on multiple medical image segmentation tasks, adding
a supervisory signal after each nested dense convolution of the first
layer to supervise the output of U-Net for each branch to enhance the
segmentation performance. A 3D DSN [36] was proposed to segment
CT and MR medical images, up-scaling hidden-level features using ad-
ditional deconvolutional layers to counteract adverse effects of unstable
gradient changes. Besides, to solve the problem of information loss
during forward propagation, a deeply supervised nonlinear aggregation
model [34] was proposed for salient object detection, where side-
output features are from the expansive path, and are aggregated in
a nonlinear way to calculate the losses relative to the ground truths.
As the main difference to these works, however, our deep supervised
signals are added in each expansive hidden layer of U-Net for medical
image segmentation.

Similar to our work, there also exists research achieving deep su-
pervision by adding additional supervision signals on each expansive
hidden layer of U-Net. UNet3+ [13] generates intermediate outputs
by bilinear up-sampling to learn hierarchical representations from full-
scale aggregated feature maps. M-Net [12] uses the side-output to
produce a companion local prediction map for different scale layers and
uses a multi-label loss function to calculate the additional supervision
signals. Li et al. [37] use the auxiliary outputs that are added before
each upper sampling to supervise the model deeply and mask gradient
propagation better. Liu et al. [38] compare the ground truths with the
merged outputs of the last layer and of the intermediate layer after up-
sampling. In addition to the above methods where the feature maps
are generated by each expansive hidden layer after deconvolution and
up-sampling, and then directly compared with the ground truths to
obtain additional supervision signals, an alternative is to downsample
the ground truths to a size similar to the feature maps generated by
the corresponding expansive hidden layer as the pseudo-labels. The
former is called upsampled deep supervision, while the latter is called
downsampled deep supervision. Reiss et al. [14] propose a new supervi-
sion mechanism, which down-samples the ground truths to match the

feature map’s spatial extent through a suitable max-pooling layer.
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Fig. 1. Overall structures of the proposed U-Net-Deep, U-Net-Auto, and 𝜇-Net, where three different deep supervision strategies for 𝜇-Net are also visualized. Here, 𝐿𝐵𝐷 represents
the combination of BCE and Dice Losses.
However, we found that both the existing upsampled and down-
sampled deep supervision methods will encounter the problem of se-
mantic difference, so in this work, we propose a deep supervision
semantic similarity principle, and based on this principle, we propose
that 𝜇-Net makes additional supervision on each expansive hidden
layer calculated based on intermediate predictions and pseudo-labels of
similar semantics. To show the superior performance of our Similarity
Principle of Deep Supervision in segmentation, we conduct experiments
comparing our method with the main existing deep supervisions: up-
sampled deep supervision, M-Net [12], downsampled deep supervision,
and MLDS-Net [14].
Integrating Autoencoders with U-Net. Similar to our work, there are
other works that integrate an autoencoder with U-Net to achieve a
more accurate and efficient segmentation. Myronenko et al. [39] add a
variational autoencoder branch to the encoder endpoint to reconstruct
the original image to regularize the tied decoder and impose additional
constraints on its layers. A hierarchical probabilistic U-Net [40] is
a U-Net with a conditional variational decoder to achieve a high-
fidelity sampling and reconstruction while providing flexibility. In [41],
a variational decoder can correct many topological incoherences by
learning a rich but compact latent space. However, our work is different
from these works for the following reason: most of these methods use
the autoencoder to improve the speed and accuracy of feature learning
by the introduced reconstructive loss. While in 𝜇-Net, in addition to the
above purpose, we also use the autoencoder to generate pseudo-labels
that are semantically similar to but not completely consistent with the
immediate predictions on the expansive path of U-Net, so we use a
tie-weight instead of a variational autoencoder. This is to ensure that
the expansive path is structurally similar to the shared extracting path
and the expansive path of U-Net, to ensure that the pseudo-labels and
intermediate predictions have a similar semantics.

3. Methodologies

U-Net [4] and its variants use the contracting path to capture
semantic features and the expansive path to restore the location infor-
mation and introduce skip connections to recover the lost information.
However, these models may not be sufficient to fully recover the lost
information and inevitably result in inaccurate segmentation for small
4

objects and objects with complex boundary details [42]. Intuitively, in
the contracting path of U-Net, the features of these important small
objects and edges become less and less visible or even disappear,
leading to an inaccurate segmentation for small objects and objects with
complex boundary details [43]. These minor errors may be tolerable
in natural image segmentation, but are unacceptable in medical image
segmentation, because they may have fatal consequences in clinical
practice (e.g., when this model is used to delineate the object area
of a tumor lesion in radiotherapy, even a few tumor cells missed
may cause the failure of radiotherapy and cancer recurrence). There-
fore, the need for a more accurate deep model for medical image
segmentation is compelling. The commonly used solution is to use
deep supervision to provide semantic information to the intermediate
layers, and to improve the segmentation performance by directly and
early constraining the weight update process of the intermediate layers
and the output layer. Most of these methods use the ground truths
through convolutional layers or pooling operations to obtain pseudo-
labels, and then compare these pseudo-labels with the intermediate
outputs obtained through multiple layers of down-sampling and up-
sampling. However, the pseudo-labels and intermediate predictions in
these methods have large semantic differences due to the different ways
of generating them. Besides, deep intermediate learning with additional
supervision signals will inevitably mask the training of the models more
time-consuming.

Hence, in this paper, we propose a series of models to solve the
above problems; see Fig. 1. Compared with the existing deep supervi-
sion, our models mainly obtain the pseudo-labels by the ground truths
through down-sampling and up-sampling similar to the intermediate
outputs, and then compare the pseudo-labels with the intermediate
predictions to constrain the weight filtering process of the interme-
diate layers. Intuitively, the main idea is that the pseudo-labels and
intermediate predictions can make up the semantic difference between
the two by going through similar, rather than identical, convolutional
processes. Specifically, we first propose U-Net-Deep (pseudo-labels and
intermediate outputs are generated through a fully consistent convo-
lution process) and U-Net-Auto (pseudo-labels are generated through
an autoencoder similar to the segmentation model) to overcome the
semantic difference problem. In addition, we further propose a more ef-
fective and efficient segmentation model, 𝜇-Net, which not only further
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expands the diversity of details of pseudo-labels but also improves the
convergence performance via the tied-weight decoder. According to the
different pseudo-labels used, 𝜇-Net can be refined into three training
strategies.

3.1. U-Net-Deep

In this section, we propose U-Net-Deep based on U-Net to overcome
the semantic difference problem, shown in Fig. 1(i). More details of the
proposed U-Net-Deep and the corresponding hybrid loss function are
presented in the following subsections.

In detail, as shown in Fig. 1(i), similarly to U-Net, U-Net-Deep
feeds the original images into U-Net and then outputs the segmen-
tation results; but, differently from U-Net, U-Net-Deep also feeds the
corresponding ground truths into U-Net as the additional inputs. Then,
the intermediate outputs generated by the original images and ground
truths in the expansive path are used as intermediate segmentation
outputs and intermediate segmentation masks, respectively, and the
loss between the two is called the intermediate loss function. Finally, U-
Net-Deep is learned by comprehensive supervision, that is, mask-guided
supervision signals are added to each layer of the expansive layer.

The advantage of U-Net-Deep is that the ground truths are directly
fed into the segmentation model to generate supervision signals in
each layer of the expansive path. On the one hand, the existing deep
supervision methods (i.e., U-Net++) add some supervision signals to
the convolution block of the last layer. These methods do not guarantee
that the features of small objects or segmentation edges are still com-
pletely preserved in the middle layer. On the other hand, the existing
deep supervision methods add supervision signals to the outputs of
the intermediate layer after a series of convolution operations. These
methods are likely to cause a further loss of important features. Our
method is to directly feed the ground truths into the model, and use the
masks to guide the comprehensive intermediate supervision mechanism
by adding supervision signals to each layer of the expansive path, which
can more effectively improve the segmentation performance of small
objects and segmentation edges. Our methods are described in detail
as follows.

Our proposed intermediate supervision mechanisms all adopt a set
of 2D grayscale medical images as the inputs for the segmentation
model to reduce the model’s calculation efforts. To obtain the 2D
grayscale medical images, we first transform all the original datasets
into 2D medical images according to the transverse section in a slice-by-
slice manner [44]. However, medical images and segmentation masks
in BraTS are RGB images. Therefore, to confirm that the inputs are
2D grayscale images, we then use PyTorch to convert all inputs into
grayscale images before all 2D medical images are fed into models.
Note that to make the difference between the segmentation outputs and
the segmentation backgrounds more visible, we convert all the output
grayscale images into RGB images after the last layer of the model.

After that, like in the original U-Net, we input the original medical
images (denoted as 𝑥) into the segmentation model to produce the
segmentation outputs (denoted as 𝑦) and calculate the loss 𝐿𝑖𝑚𝑎𝑔𝑒 of
them. Besides, to add some additional intermediate supervision signals,
we also preserve the intermediate segmentation outputs, denoted as
𝑦𝑖 (where 𝑖 ∈ {0, 1, 2, 3, 4}). However, the intermediate segmentation
outputs are segmented from the original images through a series of
convolution and non-linearities operations [21]. So, their sizes are
different from those of the corresponding original segmentation masks.
Thus, one of the problems that we face is how to get the corresponding
ground truths of the intermediate segmentation outputs.

It occurred to us that if we get the intermediate outputs of the corre-
sponding segmentation masks, this problem will be solved. Therefore,
we also input the corresponding segmentation masks 𝐺 into the model
as additional inputs to generate the intermediate segmentation outputs
𝑦𝑔𝑖 and the final outputs 𝑦𝑔 of the segmentation masks. Besides, 𝑦𝑔𝑖 are
5

regarded as the corresponding ground truths of 𝑦𝑖. It is worth noting
that these ground truths are transformed into grayscale images before
they are as additional inputs fed into the network. Finally, the seg-
mentation loss between 𝑦 and 𝐺 is regarded as 𝐿𝑖𝑚𝑎𝑔𝑒, and 𝐿𝑚𝑎𝑠𝑘 is the
egmentation loss between 𝑦𝑔 and 𝐺, and 𝐿𝑠𝑒𝑔 is the segmentation loss
etween 𝑦 and 𝑦𝑔 . Moreover, we calculate the additional intermediate

supervision losses 𝐿𝑖 of the deepest layer and the expansive path of
the model according to 𝑦𝑖 and 𝑦𝑔𝑖 . Briefly, based on U-Net, our U-Net-
Deep adds some intermediate supervision signals (i.e., 𝐿𝑖) and a final
layer loss (i.e., 𝐿𝑠𝑒𝑔 and 𝐿𝑚𝑎𝑠𝑘) for small objects in medical images to
improve the segmentation accuracy of the model for small objects. In
detail, these intermediate supervision losses are as follows.

Formally, given the original medical images 𝑋, the corresponding
segmentation masks 𝐺, and their outputs in the last layer of the model
denoted as 𝑦 and 𝑦𝑔 , the above loss functions are defined as follows:

𝐿𝑖𝑚𝑎𝑔𝑒 = 𝐿𝐵𝐷(𝑦, 𝐺), (1)

𝐿𝑚𝑎𝑠𝑘 = 𝐿𝐵𝐷(𝑦𝑔 , 𝐺), (2)

𝐿𝑠𝑒𝑔 = 𝐿𝐵𝐷(𝑦, 𝑦𝑔), (3)

where 𝐿𝐵𝐷 is the combination of binary cross-entropy loss [45] (BCE
loss) and Dice loss [46] (also known as F1 score), which is denoted as
follows:

𝐿𝐵𝐷(𝑦, 𝑦𝑔) = − 1
𝑁

𝑁
∑

𝑗
( 1
2
⋅ 𝑦[𝑗] ⋅ log 𝑦

𝑔
[𝑗] +

2 ⋅ 𝑦[𝑗] ⋅ 𝑦
𝑔
[𝑗]

𝑦[𝑗] + 𝑦𝑔[𝑗]
), (4)

where 𝑦[𝑗] and 𝑦𝑔[𝑗] denote the predicted probabilities and the ground
truths of the 𝑗th image, respectively, and 𝑁 indicates the batch size.
Then, the intermediate outputs of 𝑋 and 𝐺 of the segmentation model
are denoted as 𝑦𝑖 and 𝑦𝑔𝑖 , respectively, and the deep loss function in the
intermediate layers is denoted as follows:

𝐿𝐷 = 𝐿𝑀 (𝑦𝑖, 𝑦
𝑔
𝑖 ) =

1
𝑁

𝑁
∑

𝑗
(𝑦𝑖[𝑗], 𝑦𝑔𝑖[𝑗])

2, (5)

where 𝐿𝑀 is the mean squared error (MSE) loss [47], 𝑖 ∈ {0, 1, 2, 3, 4}.
Finally, our hybrid loss function (𝐿1

ℎ) is the sum of 𝐿𝑖𝑚𝑎𝑔𝑒, 𝐿𝑚𝑎𝑠𝑘,
𝐿𝐷, and 𝐿𝑠𝑒𝑔 . In this way, the loss function not only considers the
segmentation outputs in the deepest layer of the model like in the
original U-Net, but also adds multiple intermediate supervision signals
in the intermediate layers of the model. Therefore, the model’s learning
ability for small objects and the segmentation details in medical images
can be enhanced. 𝐿1

ℎ is defined as follows:

𝐿1
ℎ = 𝛼𝐿𝑖𝑚𝑎𝑔𝑒 + 𝛽𝐿𝑚𝑎𝑠𝑘 + 𝜆

4
∑

𝑖=0
𝜔𝑖𝐿𝐷 + 𝛾𝐿𝑠𝑒𝑔 , (6)

where 𝛼, 𝛽, 𝜆, 𝜔𝑖, and 𝛾 are the weights of the loss functions, which are
independent parameters that can be adjusted as required.

3.2. U-Net-Auto

However, U-Net is mainly engaged in segmentation, and the ex-
tracted feature is also the position information for precise positioning,
and the input and output of U-Net are different images. Our inter-
mediate monitoring mechanism requires both the original mask input
and output, which is more similar to the reconstruction process of an
autoencoder (AE) [48]. Therefore, we combine an AE with U-Net and
propose U-Net-Auto. The structure is shown in Fig. 1(ii). The main
difference to U-Net-Deep is as follows. U-Net-Deep directly inputs cor-
responding segmentation masks into the model, and the intermediate
output generated by them is taken as corresponding ground truths,
while U-Net-Auto inputs segmentation masks into another autoencoder,
and takes the intermediate output generated in the autoencoder as
corresponding ground truths. U-Net-Auto and its loss function are as

follows.
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Similarly to U-Net-Deep, the original image 𝑋 and the correspond-
ing segmentation masks 𝐺 are input into the AE to generate recon-
structed outputs 𝑥 and 𝑦′𝑔 , and intermediate outputs 𝑦𝑖 and 𝑦′𝑔𝑖 , respec-
tively. 𝑦′𝑔𝑖 and 𝑦′𝑔 are also seen as the corresponding ground truths of
𝑦𝑖 and 𝑦, respectively. Intuitively, we can think that the middle ground
truths can be obtained by minimizing the reconstruction errors. In
addition, we also input original medical images into the AE to enhance
the effect of reconstruction of the AE. Finally, the loss function 𝐿′

𝑖𝑚𝑎𝑔𝑒
between 𝑦 and 𝐺 in U-Net, the loss function 𝐿′

𝑟𝑒𝑚 between 𝑦′𝑔 and 𝐺
in the AE, the loss function 𝐿′

𝑟𝑒𝑖 between 𝑥 (the outputs of original
images) and 𝑋 in the AE, the loss function 𝐿′

𝑠𝑒𝑔 between 𝑦 and 𝑦′, and
the intermediate loss function 𝐿′

𝐷 between 𝑦𝑖 and 𝑦′𝑔𝑖 are superimposed
together as the hybrid loss function of U-Net-Auto:

𝐿2
ℎ = 𝛼𝐿′

𝑖𝑚𝑎𝑔𝑒 + 𝑎𝐿′
𝑟𝑒𝑚 + 𝑏𝐿′

𝑟𝑒𝑖 + 𝛾𝐿′
𝑠𝑒𝑔 + 𝜆

4
∑

𝑖=0
𝜔𝑖𝐿

′
𝐷, (7)

𝐿′
𝑟𝑒𝑚 = 𝐿𝐵(𝑦′𝑔 , 𝐺), (8)

𝐿′
𝑟𝑒𝑖 = 𝐿𝐵(𝑥,𝑋), (9)

𝐿𝐵(𝑥, 𝑔) = − 1
𝑁

𝑁
∑

𝑗
[𝑥[𝑗] log 𝑔[𝑗] + (1 − 𝑥[𝑗]) log(1 − 𝑔[𝑗])], (10)

where 𝐿𝐵 is the BCE loss, 𝑥 and 𝑔 denote the reconstructed probabilities
and the ground truths of the 𝑗th image, respectively, and 𝑁 indicates
the batch size. 𝛼, 𝑎, 𝑏, 𝛾, 𝜆, and 𝜔𝑖 are the weights of the loss functions,
which are independent parameters that can be adjusted as required.

3.3. 𝜇-Net

Although U-Net-Deep and U-Net-Auto properly solve the seman-
tic difference problem, the low learning efficiency problem has not
been completely solved. Specifically, by solving the semantic difference
problem, U-Net-Deep and U-Net-Auto can not only enhance the model’s
feature learning ability and achieve better segmentation performance,
but also the number of training epochs required for achieving conver-
gence is lower than the existing deep supervision methods. However,
because U-Net-Deep and U-Net-Auto require two inputs, they have
a higher average time-cost for each training epoch. Thus, when the
increase of the latter overwhelms or is similar to the decrease of the
former, their total training time-cost may be similar to or even higher
than existing deep supervision methods. Besides, U-Net-Deep and U-
Net-Auto have two different encoders, which may lead to different
extracted features (for example, one encoder may extract horizon-
tal features, while another one may extract vertical features), which
may lead to the inconsistent output of the decoders. The resulting
intermediate segmentation mask is not the most ideal [49]. To fully
solve the low-efficiency problem and further improve the segmentation
performance, we propose an efficient and accurate deep supervised
segmentation model, 𝜇-Net, to further significantly reduce the number
of convergence epochs and ensure that the epoch reduction is always
far higher than the increase of each epoch time-cost. Consequently, 𝜇-
Net completely solves the low-efficiency problem and further improves
the segmentation performance. 𝜇-Net combines the encoders of U-Net
and AE to form a tied-weight decoder whose structure is shown in
Fig. 1(iii).

Intuitively, for the following reason, adding the tied-weight de-
coder can greatly accelerate the model’s learning progress and reduce
training runs needed for model convergence. First, autoencoders can
extract useful features continuously during backpropagation and filter
the useless information [48]. Then, in the intermediate supervision
mechanisms, the learning signals of the segmented objects become very
weak when they are backpropagated to the first few layers, so learning
the first few weight matrices (e.g., 𝑊1 and 𝑊2) is very slow, which is
the vanishing gradient problem [20]. In 𝜇-Net, we use a tied-weights
decoder, which means that the weight matrices in the expansive path
6

are the transposes of those in the contracting path. Therefore, the
reconstruction-error-based learning signal will be used to first update
𝑊 𝑇

1 , then backpropagate to update the second layer 𝑊 𝑇
2 , the third layer

𝑊 𝑇
3 , and so on. As updating 𝑊 𝑇

𝑖 (where 𝑖 ∈ {0, 1, 2, 3, 4}) is equivalent
to updating 𝑊𝑖, it remedies the vanishing gradient problem.

Fig. 1(iii) shows the overall process of the proposed 𝜇-Net. 𝜇-Net
is similar to U-Net-Deep and U-Net-Auto, but adds four convolution
blocks to form an additional decoder and uses one contracting path, so,
by taking the first five blocks as encoder, we convert each convolution
block to an autoencoder with tied weights. That is, the weight matrices
in the additional decoder are the transposes of those in the original
encoder. It is important to note that 𝜇-Net is different from U-Net-
Auto in the AE branch. The AE branch in U-Net-Auto is designed
to ensure that the same features are extracted from the U-Net and
AE in the contracting path to improve the segmentation performance.
Whereas the AE branch of 𝜇-Net is to improve the model’s training
efficiency while improving the segmentation performance. According to
the intermediate outputs generated by the ground truths in different ex-
pansive paths, 𝜇-Net can be divided into three substructures: 𝜇-Net-Seg,
𝜇-Net-Rec, and 𝜇-Net-Hyb, as shown in Fig. 1(iv)–(vi).

In 𝜇-Net-Seg, the original images 𝑋 are first fed into the model
o generate the segmented outputs 𝑦 in U-Net and the reconstructed

outputs 𝑦𝑥 in AE. Meanwhile, the intermediate outputs 𝑦𝑖 and the in-
termediate reconstruction 𝑦𝑥𝑖 are generated in the two branches. Then,
the corresponding ground truths 𝐺 are fed into the model, generating
the outputs 𝑦𝑔 and intermediate outputs 𝑦𝑔𝑖 in the branch of U-Net.
Similarly, 𝑦𝑔𝑖 are the ground truths of 𝑦𝑖. Finally, the loss function 𝐿1

𝑖𝑚𝑎𝑔𝑒
between 𝑦 and 𝐺 in U-Net, the loss function 𝐿1

𝑟𝑒𝑖 between 𝑦𝑥 and 𝑋
in AE, the loss function 𝐿1

𝑚𝑎𝑠𝑘 between 𝑦𝑔 and 𝐺 in U-Net, and the
intermediate loss function 𝐿1

𝐷 between 𝑦𝑖 and 𝑦𝑔𝑖 , and 𝐿1
𝑠𝑒𝑔 between

𝑦 and 𝑦𝑔 are superimposed together as the hybrid loss function of
𝜇-Net-Seg:

𝐿31
ℎ = 𝛼𝐿1

𝑖𝑚𝑎𝑔𝑒 + 𝛽𝐿1
𝑚𝑎𝑠𝑘 + 𝑏𝐿1

𝑟𝑒𝑖 + 𝛾𝐿1
𝑠𝑒𝑔 + 𝜆

4
∑

𝑖=0
𝜔𝑖𝐿

1
𝐷, (11)

where 𝛼, 𝜆, 𝑏, 𝛾, 𝜆, and 𝜔𝑖 are the weights of the loss functions, which
are independent parameters that can be adjusted as required.

The structure of 𝜇-Net-Rec is similar to 𝜇-Net-Seg, the only dif-
ference is that the intermediate outputs 𝑦′𝑔𝑖 and 𝑦′𝑔 are generated by
inputting the ground truths 𝐺 into the expansive path of AE. The
hybrid loss function is the sum of the loss function 𝐿2

𝑖𝑚𝑎𝑔𝑒 between the
segmentation outputs 𝑦 and 𝐺 in U-Net, the loss function 𝐿2

𝑟𝑒𝑚 between
the reconstruction outputs 𝑦𝑥 and 𝐺 in AE, the loss function 𝐿2

𝑟𝑒𝑖
between 𝑦𝑥 and 𝑋, the intermediate loss 𝐿2

𝐷 between the intermediate
outputs 𝑦𝑖 in U-Net and the intermediate outputs 𝑦′𝑔𝑖 in AE, and the
intermediate loss 𝐿2

𝑠𝑒𝑔 between the outputs 𝑦 in U-Net and the outputs
𝑟 in AE:

𝐿32
ℎ = 𝛼𝐿2

𝑖𝑚𝑎𝑔𝑒 + 𝑎𝐿2
𝑟𝑒𝑚 + 𝑏𝐿2

𝑟𝑒𝑖 + 𝜉𝐿2
𝑠𝑒𝑔 + 𝜂

4
∑

𝑖=0
𝜎𝑖𝐿

2
𝐷, (12)

where 𝛼, 𝑎, 𝑏, 𝜉, 𝜂, and 𝜎𝑖 are the weights of the loss functions, which
are independent parameters that can be adjusted as required.

𝜇-Net-Hyb can be regarded as a comprehensive structure of 𝜇-Net-
Seg and 𝜇-Net-Rec. It not only includes the intermediate supervision
signals generated by the expansive paths of U-Net in 𝜇-Net-Seg, but also
includes the intermediate supervision signals generated by the expan-
sive path of AE in 𝜇-Net-Rec. The hybrid loss function is composed of (i)
the loss function 𝐿3

𝑖𝑚𝑎𝑔𝑒 between the segmentation outputs 𝑦 and 𝐺, the
loss function 𝐿3𝑚𝑎𝑠𝑘 between 𝑦𝑔 and 𝐺 in U-Net; (ii) the loss function
𝐿3
𝑟𝑒𝑚 between the reconstruction outputs 𝑦𝑥 and 𝐺, the loss function 𝐿3

𝑟𝑒𝑖
between 𝑦𝑥 and 𝑋 in AE; (iii) the intermediate loss function 𝐿3

𝐷 between
the intermediate outputs 𝑦𝑖 and 𝑦𝑔𝑖 in U-Net, and the intermediate loss
function 𝐿3′

𝐷 between the intermediate outputs 𝑦𝑖 in U-Net and 𝑦′𝑔𝑖 in
3 𝑔
AE; and (iv) the loss function 𝐿𝑠𝑒𝑔 between 𝑦 and 𝑦 in U-Net, and the



Computers in Biology and Medicine 160 (2023) 106963D. Yuan et al.

𝐿

4

p
d
S
h
m
A
e
v
c
o
m
a
u
t
w
i
p
S
d
h
S
m
o

4

e
m
f
c
r
t
s
d
B
2
t
1
F
(
s
o
o
t
t
p
F

Table 1
Datasets information.

Datasets Images Input size Modality Challenge Source

BraTS [50] 24,864 240 × 240 T1ce Complex and heterogeneously-located objects MICCAI
Cardiac [51] 1350 320 × 320 MRI Small training dataset with large variability King’s College London
Spleen [51] 1050 512 × 512 CT Large ranging foreground size Memorial Sloan Kettering Cancer Center
Liver [51] 19,160 512 × 512 CT Label unbalance with a large and small target Several clinical sites
loss function 𝐿3′
𝑠𝑒𝑔 between 𝑦 in U-Net and 𝑦′𝑔 in AE:

33
ℎ = 𝛼𝐿3

𝑖𝑚𝑎𝑔𝑒 + 𝛽𝐿3
𝑚𝑎𝑠𝑘 + 𝑎𝐿3

𝑟𝑒𝑚 + 𝑏𝐿3
𝑟𝑒𝑖 + 𝛾𝐿3

𝑠𝑒𝑔 + 𝜉𝐿3′
𝑠𝑒𝑔

+ 𝜆
4
∑

𝑖=0
𝜔𝑖𝐿

3
𝐷 + 𝜂

4
∑

𝑖=0
𝜎𝑖𝐿

3′
𝐷 .

(13)

. Experimental studies

Extensive experiments have been conducted to evaluate our pro-
osed 𝜇-Net. In this section, we first introduce the information of
atasets, baselines, experimental settings, and evaluation metrics in
ections 4.1–4.3. Then, to prove the effectiveness of our method, we
ave conducted extensive experimental studies to compare the perfor-
ance of 𝜇-Net with four state-of-art baselines: FCN [23], U-Net [4],
ttention U-Net [21], and ResUNet++ [30]. After that, to validate the
ffectiveness and necessity of the Similarity Principle of Deep Super-
ision and tied-weight decoder in 𝜇-Net, ablation studies are further
onducted. Furthermore, to show that our proposed Similarity Principle
f Deep Supervision is more suitable for small object segmentation on
edical images than the state-of-the-art deep supervision mechanisms,

dditional experiments are conducted to compare the performance of
sing the Similarity Principle of Deep Supervision with that of using
wo deep supervision mechanisms. Similarly, to show that the tied-
eight decoder is more effective for small object segmentation on med-

cal images than the common VAE decoder, we have conducted sup-
lementary experiments to compare the Similarity-Principle-of-Deep-
upervision-based tied-weight decoder with the similarity-principle-of-
eep-supervision-based VAE decoder. Finally, to obtain the optimal
yperparameter settings in the proposed Similarity Principle of Deep
upervision and tied-weight decoder and to achieve the best perfor-
ances for 𝜇-Net, grid search has been applied to evaluate the effect

f varying loss weights on the performances of 𝜇-Net.

.1. Datasets and preprocessing

The empirical studies over four real datasets confirm that our mod-
ls beat other baseline models. As shown in Table 1, we use four
edical imaging datasets for model evaluation, covering lesions/organs

rom different medical imaging modalities. These datasets contain the
haracteristics of small datasets and small objects and are more rep-
esentative of the characteristics of current medical images. Moreover,
hese datasets have a common feature: the segmentation objects are
maller than the background image and contain more segmentation
etails (e.g., the segmentation edges).
raTS (brain tumor segmentation) [50] uses the HGG in the BraTS
019 training set, because the test set has no labels, and the tumor in
he HGG is relatively obvious. BraTS has 259 cases, each case contains
55 slices of 240 ∗ 240 MR images. Each case has four modes (T1, T2,
lair, T1ce), we choose the T1ce mode to segment the whole tumor
WT), enhance tumor (ET), and tumor core (TC). The difficulty of
egmentation on BraTS lies in the complex and heterogeneously-located
bjects. The segmentation task on BraTS is challenging because it not
nly contains 3 kinds of segmenting objects, i.e., whole tumor region,
umor core region, and tumor enhancement region, but also most of the
umor enhancement regions are very small, taking up only hundreds of
ixels in the images (see the white small spots in the first two rows of
7

ig. 2 as examples).
Cardiac [51] is a public CT dataset to automatically segment the
heart, which contains 20 cases. As the scanning mechanism is different,
each case has 320 ∗ 320 CT images with a range of 90 to 130 slices.
The difficulty of its segmentation is that the dataset is small and the
segmentation objects change greatly.
Spleen [51] is a public CT dataset to automatically segment the spleen,
which contains 41 cases. As the scanning mechanism is different, each
case has 512 ∗ 512 CT images with a number of slices ranging from 31 to
168. The segmentation challenge of this dataset is that the segmentation
objects vary greatly.
Liver [51] is a public liver CT dataset which contains 131 cases. Each
case contains some 512 ∗ 512 CT images (i.e., slices), and the number
of slices ranges from 29 to 299. Similar to BraTS, the segmentation
task on this dataset is twofold: aiming to segment not only livers but
also the corresponding liver tumors, where the sizes of liver tumors are
relatively small, i.e., taking up 3689 pixels in average (i.e., only about
1.4% of the whole image).

To train and evaluate the networks, all the above four medical
image datasets are preprocessed as follows. First, for all datasets, we
transform these 3𝐷 images into 2𝐷 images according to the transverse
section in a slice-by-slice manner [44]. Then, we normalize all input
images to have zero mean and unit std. After that, for the BraTS dataset,
to remove a part of the images without the segmentation objects, we
removed the 30 slices before and after, that is, only the 30th to the
125th slices are selected in our models. For the Cardiac and Spleen
datasets, negative samples are deleted from the small datasets with
small objects to better segment the small objects. Moreover, considering
the calculation effort, we set the resize of the original medical images
and ground truths in the Spleen and Liver datasets to 480 × 480 [52].
Finally, for all datasets, there are 70% of the datasets for training, 10%
for validation, and 20% for testing.

4.2. Baselines

In order to evaluate the performances of the proposed 𝜇-Net,
the four state-of-art deep-learning-based image segmentation methods
FCN [23], U-Net [4], Attention U-Net [21], and ResUNet++ [30] are
selected as baselines. The reasons for selecting these four methods as
the baselines are as follows. (i) FCN is the first deep-learning-based
end-to-end image segmentation model; (ii) U-Net is arguably the most
widely adopted deep model for medical image segmentation, and it is
also used as the backbone of the proposed 𝜇-Net; (iii) Attention U-
Net and ResUNet++ are common variants of U-Net. Besides, we also
select the four state-of-the-art deep supervision methods U-Net++ [17],
U-Net3+ [13], M-Net [12], and MLDS-Net [14] as baselines. These
deep supervision methods cover the state-of-the-art and most common
deep supervision methods available: (i) U-Net++, U-Net3+, and M-Net
are deep supervised models that up-samples the intermediate outputs
to compare with the ground truths, and (ii) MLDS-Net is a deep
supervised model that down-samples the ground truths to compare with
the intermediate outputs.

Furthermore, to illustrate the effectiveness and necessity of the
proposed Similarity Principle of Deep Supervision and tied-weight de-
coder proposed in 𝜇-Net, ablation studies are further carried out,
where several deeply supervised models using different pseudo-labels
are introduced and evaluated. Specifically, the intermediate models

are as follows: (i) U-Net-Deep is constructed by using semantically
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Fig. 2. Visualization of segmentation results of our proposed 𝜇-Net-Hyb and the baselines on four datasets. The yellow, red, and white areas on BraTS are the whole tumor region,
tumor core region, and tumor enhancement region, respectively; the green areas on Cardiac, Spleen, and Liver dataset are the segmented organs (i.e., heart, spleen, and liver);
the blue areas on Liver is the resulting segmented areas of liver tumors; while the white boxes (i.e., rectangle boundary) are used to mark the wrongly segmented areas of the
state-of-the-art baselines.
identical deep supervision onto U-Net; (ii) U-Net-Auto is based on U-
Net using semantically similar deep supervision; and (iii) 𝜇-Net is a
model that incorporates a tied-weight decoder with U-Net, according
to different training strategies, further divided into: (a) 𝜇-Net-Seg is
obtained by using identical semantic pseudo-labels into 𝜇-Net; (b) 𝜇-
Net-Rec is 𝜇-Net with reconstructive pseudo-labels; and (c) 𝜇-Net-Hyb
integrates the hybrid pseudo-labels with 𝜇-Net. In addition to verifying
the effectiveness of our deep supervision mechanisms, we also want to
prove that our deep supervision mechanisms can be widely applicable
to U-Net and its variants, so we further use U-Net++ as the backbone
of the proposed strategies, resulting in U-Net-Deep++, U-Net-Auto++,
𝜇-Net++, 𝜇-Net-Seg++, 𝜇-Net-Rec++, and 𝜇-Net-Hyb++.

To demonstrate that the proposed Similarity Principle of Deep
Supervision is a better choice for small object segmentation tasks
than the state-of-the-art deep supervision, we further conduct some
additional experiments to compare the Similarity Principle of Deep
Supervision with two baselines: U-Net with Up and U-Net with Down.
Specifically, we first refer to M-Net [12] to compare the intermediate
outputs of the expansive path after up-sampling with the ground truths,
and build a deep supervision model U-Net with Up; then, we refer
to MLDS-Net [14] to down-sample the ground truths and compared
with the intermediate outputs of the expansive path to form a deep
supervision model U-Net with Down. Finally, this quantitative model
is compared with U-Net-Deep and U-Net-Auto (U-Net with Similarity
Principle of Deep Supervision), showing the superiority of our proposed
Similarity Principle of Deep Supervision. Similarly, other additional
experiments are also conducted to compare the tied-weight decoder
with a variational autoencoder (VAE) decoder module. The module of
8

VAE decoder, a state-of-the-art additional decoder module, is added to
U-Net with Similarity Principle of Deep Supervision referring to [39],
resulting 𝜇-Net using VAE decoder is compared with 𝜇-Net-Rec.

4.3. Experimental settings

Our experiments are implemented using the PyTorch framework1

and run on NVIDIA TITAN XP 12 GB GPU (for larger image size
in the Spleen dataset) and NVIDIA GeForce GTX 2080Ti GPU. The
implementation details of the proposed 𝜇-Net are shown as follows.
The basic structure of 𝜇-Net adopts 5-layer U-Net with k kernels of
size 3 × 3, where k = 64 × 2𝑖 (i indexes the down-sampling layer
along with the decoder). Then, 𝜇-Net and all the baselines are trained
on the BraTS, Cardiac, and Spleen datasets using the Adam optimizer
with mini-batch sizes of 4, 2, and 1, respectively. The learning rate is
initialized as 𝛼0 = 3𝑒−4 and progressively decreased for every three
training epochs according to 𝛼 = 𝛼0 ∗ 0.9. Moreover, we also use the
early-stop mechanism on the validation set; specifically, the model stops
training when the average of all metrics for training 2 ∗ 𝑏𝑒𝑠𝑡𝑒𝑝𝑜𝑐ℎ (the
epoch of average value of all metrics reaches the maximum value) no
longer increases or reaches the maximum training epochs. Finally, we
conduct grid search to investigate the effect of different loss weights on
the 𝜇-Net segmentation performance.

To show the effectiveness of our models, we use the Dice coeffi-
cient (DICE), Positive Predictive Value (PPV), Sensitivity (SEN), and

1 https://pytorch.org/.

https://pytorch.org/
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Table 2
Segmentation accuracies of 𝜇-Net and the state-of-the-art baselines on four public databases. The best results are bold.

Anatomy BraTS Cardiac Spleen Liver

DICE PPV SEN IoU DICE PPV SEN IoU DICE PPV SEN IoU DICE PPV SEN IoU

FCN [23] 0.6956 0.8382 0.7030 0.6457 0.8835 0.9028 0.8846 0.8532 0.8069 0.9058 0.8151 0.7588 0.8064 0.9330 0.8315 0.7871
U-Net [4] 0.7145 0.8408 0.7203 0.6651 0.9057 0.9045 0.9190 0.8754 0.8940 0.9133 0.8585 0.8362 0.8236 0.8988 0.8795 0.8022
Attention U-Net [21] 0.7148 0.8490 0.7411 0.6620 0.9183 0.9418 0.9162 0.8872 0.9310 0.9317 0.9522 0.8988 0.8580 0.9313 0.8858 0.8327
ResUNet++ [30] 0.7197 0.8629 0.7273 0.6701 0.9176 0.9249 0.9321 0.8893 0.9245 0.9296 0.9301 0.8862 0.8591 0.9191 0.8941 0.8339

U-Net++ [17] 0.7192 0.8426 0.7233 0.6657 0.9111 0.9089 0.9312 0.8763 0.9230 0.9187 0.8925 0.8722 0.8615 0.9236 0.8972 0.8362
U-Net3+ [13] 0.7292 0.8726 0.7396 0.6780 0.9304 0.9405 0.9364 0.9011 0.9440 0.9305 0.9369 0.8597 0.8700 0.9374 0.8932 0.8464
M-Net [12] 0.7163 0.8433 0.7229 0.6652 0.9135 0.9199 0.9209 0.8796 0.9243 0.9398 0.9328 0.8927 0.8310 0.9211 0.8654 0.8047
MLDS-Net [14] 0.7232 0.8618 0.7293 0.6715 0.9163 0.9227 0.9318 0.8870 0.9044 0.9116 0.8755 0.8473 0.8385 0.9236 0.8672 0.8130

𝜇-Net-Hyb (ours) 0.7384 0.8950 0.7436 0.6880 0.9360 0.9489 0.9486 0.9061 0.9768 0.9767 0.9722 0.9617 0.8926 0.9395 0.9330 0.8681
𝜇-Net-Hyb++ (ours) 0.7472 0.8873 0.7646 0.6962 0.9413 0.9649 0.9490 0.9135 0.9786 0.9854 0.9748 0.9640 0.8953 0.9381 0.9496 0.8725
Table 3
Training efficiencies of 𝜇-Net and the state-of-the-art baselines on four public databases. The best results among all advanced U-Net are bold and the second best ones are
underlined.

Anatomy BraTS Cardiac Spleen Liver

Avg.T(h) Epoch Tot.T(h) Avg.T(h) Epoch Tot.T(h) Avg.T(h) Epoch Tot.T(h) Avg.T(h) Epoch Tot.T(h)

FCN [23] 0.1925 15 2.8877 0.0276 23 0.6360 0.0430 69 2.9701 0.2358 42 9.4330
U-Net [4] 0.1960 8 1.5679 0.0277 19 0.5269 0.0499 59 2.9462 0.1619 60 9.9216
Attention U-Net [21] 0.2667 39 10.4016 0.0466 51 2.3752 0.0612 65 3.9751 0.3392 49 12.9577
ResUNet++ [30] 0.6958 50 34.7905 0.0694 46 3.1913 0.1001 66 6.6076 0.5316 67 22.8983

U-Net++ [17] 0.5984 42 25.1322 0.0750 42 3.1486 0.1057 53 5.6005 0.3391 45 11.8250
U-Net3+ [13] 0.8438 32 27.0022 0.1088 30 3.2649 0.1522 52 7.9143 0.5480 35 19.1784
M-Net [12] 0.3073 30 9.2179 0.0405 50 2.0266 0.0848 83 7.0373 0.2538 51 12.9438
MLDS-Net [14] 0.2982 49 14.6107 0.0411 76 3.1248 0.0831 115 9.5576 0.2497 56 13.9832

𝜇-Net-Hyb (ours) 0.6470 7 4.5289 0.0841 13 1.0934 0.1459 21 3.0639 0.6145 10 6.1450
𝜇-Net-Hyb++ (ours) 1.0288 19 19.5476 0.1106 10 1.1056 0.1786 23 4.1078 0.8911 12 10.6932
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Intersection over Union (IoU). Specifically, DICE (also known as F1)
evaluates the overlap value between the outputs and the ground truths.
It is the comprehensive evaluation metrics of PPV and SEN. PPV (also
known as precision rate) measures the percentage of true positive
samples of all predicted positive samples. SEN (also known as recall
rate) has evaluated the probability that positive samples are correctly
classified as positive. IoU is a standard of measuring the accuracy
of corresponding objects in a specific dataset. Higher values of these
metrics mean a better performance. Formally,

𝐷𝐼𝐶𝐸 = 2 ∗ 𝑇𝑃 + 𝜖
𝑇 + 𝑃 + 𝜖

, 𝑃𝑃𝑉 = 𝑇𝑃 + 𝜖
𝑇𝑃 + 𝐹𝑃 + 𝜖

,

𝐸𝑁 = 𝑇𝑃 + 𝜖
𝑇𝑃 + 𝐹𝑁 + 𝜖

, 𝐼𝑜𝑈 = 𝑇𝑃 + 𝜖
𝑇 + 𝑃 − 𝑇𝑃 + 𝜖

, (14)

here 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are the number of true positive points, false
ositive points, and false negative points, respectively. 𝑇 is the number
f ground truth points of that class, and 𝑃 is the number of predicted
ositive points. Finally, 𝜖 is a small constant to avoid zero division,
hich is set to 1 in our experiment. Besides, the total training time-cost

i.e., training efficiency) of a deep learning model (𝑇 𝑜𝑡.𝑇 ) is determined
y two factors: the time-cost of each training epoch 𝐴𝑣𝑔.𝑇 (i.e., the
ime needed to train all samples once), and the number of training
pochs needed for the deep model to converge 𝐸𝑝𝑜𝑐ℎ; so we have
𝑜𝑡.𝑇 = 𝐴𝑣𝑔.𝑇 ×𝐸𝑝𝑜𝑐ℎ. In addition, we also use the 𝑝-value to measure

he statistic significance of improvements.

.4. Main results

The quantitative experimental results are shown in Tables 2 (accu-
acies) and 3 (efficiency), and examples of segmentation results of our
roposed 𝜇-Net and baselines on four datasets are shown in Fig. 2. To
nvestigate the effectiveness of our proposed 𝜇-Net, we conduct experi-
ents on four datasets and compare the performance of 𝜇-Net with four

tate-of-the-art segmentation baselines and four state-of-the-art deep
upervision methods.

Generally, as shown in Table 2, our proposed 𝜇-Net generally out-
erforms all the baselines, which proves that our proposed 𝜇-Net
9

t

chieves a more accurate medical image segmentation for small objects
han the state-of-art image segmentation solutions. Specifically, we
irst find that deep-supervision models (i.e., U-Net++, U-Net3+, M-
et, and MLDS-Net) are generally better than FCN and U-Net on all
atasets in terms of all metrics. This is not only because these models
re structurally improved (i.e., U-Net++ and U-Net3+), but add deep
upervision by additional supervision signals. This observation proves
hat deep models’ segmentation performances can be improved by
dding deep supervision using some additional supervision signals.
hen, by comparing our 𝜇-Net-Hyb and 𝜇-Net-Hyb++ with FCN, U-
et, and its variants (i.e., Attention U-Net and ResUNet++), we observe

hat 𝜇-Net-Hyb and 𝜇-Net-Hyb++ consistently outperform FCN, U-Net,
nd its variants, which further proves that adding deep supervision
an prevent the disappearance of the features of the important small
bjects and thus improve the segmentation accuracy of the model.
inally, Table 2 exhibits that the proposed 𝜇-Net-Hyb and 𝜇-Net-Hyb++
enerally achieve a better segmentation performance than the existing
eep-supervision-based models (i.e., U-Net++, U-Net3+, M-Net, and
LDS-Net) on all four datasets in terms of all metrics. This is because (i)

ur models utilize a semantic Similarity Principle of Deep Supervision
n the basis of U-Net to advance and directly constrain the learning
rocess of the intermediate layers; (ii) using semantically similar but
ot exactly identical deep supervision mechanism can achieve a better
mprovement in medical image segmentation than the state-of-the-art
eep supervision mechanisms; and (iii) we also introduce a tied-weight
ecoder to strengthen the model’s learning capability.

Furthermore, as shown in Table 3, to improve the segmentation
erformance, the existing deep supervision models introduce additional
ntermediate learning signals, which will cause the low-efficiency prob-
em. On one hand, the model structures of deep supervised models
-Net and MLDS-Net are very similar to that of U-Net, and the only

ifference is adding some projection heads on the intermediate layers
f U-Net’s decoder to introduce some intermediate learning signals. By
omparing the 𝐴𝑣𝑔.𝑇 of M-Net and MLDS-Net with that of U-Net, we
an find that 𝐴𝑣𝑔.𝑇 of M-Net and MLDS-Net are always much higher

han that of U-Net (e.g., 0.3073 and 0.2982 vs. 0.1925 on BraTS); the
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higher 𝐴𝑣𝑔.𝑇 comes from both the additional projection operations
needed to obtain the intermediate learning signals in feed-forward
processes and the more complex objective functions in the M-Net and
MLDS-Net models’ backpropagation optimization processes. Therefore,
these findings prove that introducing additional intermediate learning
signals will greatly increase the 𝐴𝑣𝑔.𝑇 in the existing deep supervised

odels. On the other hand, by comparing the 𝐸𝑝𝑜𝑐ℎ of M-Net and
LDS-Net with those of U-Net on BraTS and Cardiac (e.g., 30 and
9 vs. 8 on BraTS, 50 and 76 vs. 19 on Cardiac), we find that the
roblematic additional learning signals significantly increase the 𝐸𝑝𝑜𝑐ℎ
f the existing deep supervised models in relatively easy tasks. As for
he relatively difficult tasks, the results on Spleen and Liver also support
ur obverse: the 𝐸𝑝𝑜𝑐ℎ of M-Net and MLDS-Net is similar (higher
n Spleen and slightly lower on Liver) to those of U-Net. Therefore,
his phenomenon proves that additional intermediate learning signals
n the existing deep supervised models will significantly increase the
𝑝𝑜𝑐ℎ in relatively easy segmentation tasks, while 𝐸𝑝𝑜𝑐ℎ in hard

egmentation tasks is also similar to that of U-Net (the problematic
dditional learning signals have only limited promotion effect on the
earning of the original features, so 𝐸𝑝𝑜𝑐ℎ is very unlikely to be reduced
reatly). Consequently, all the above obverses fully demonstrate that
he existing deep supervised models have a low learning efficiency
roblem: By introducing additional intermediate learning signals, the
𝑣𝑔.𝑇 will be significantly increased and the 𝐸𝑝𝑜𝑐ℎ will also increase

in most cases) or remain similar (in even best case), so it is very
ikely that the 𝑇 𝑜𝑡.𝑇 is greatly increased. Please note that since U-
et++ and U-Net3+ have much more complex model structures (adding

ots of additional convolutional operations on skip-connections) than
-Net (so as M-Net and MLDS-Net), their very high 𝐴𝑣𝑔.𝑇 scores are
ot solely due to additional intermediate learning signals (but also
ue to much more complex structure); so, for fair comparison, we use
-Net and MLDS-Net instead of U-Net++ and U-Net3+ as illustration

xamples here. Then, we find that, despite of incorporating deep
upervision and achieving superior accuracy performances, the total
raining time-cost of 𝜇-Net-Hyb is much less than the state-of-the-art
eep supervised segmentation models. This is because the tied-weight
ecoder in 𝜇-Net dramatically speeds up the convergence process (the

number of epochs needed for 𝜇-Net-Hyb is only around one-third of
hose of the state-of-the-art deep supervision baselines), so even with

relatively high time-cost for each epoch, the total training time-
ost of 𝜇-Net-Hyb is much lower. Similar observations are also found
or 𝜇-Net-Hyb++; although its training time-cost is higher than 𝜇-Net-
yb due to the usage of a more complex backbone, the time is still
uch lower than those of the deep supervised baselines; this is also

ecause of the very fast convergence process in the model training.
onsequently, the findings in Table 3 sufficiently demonstrate that with
he help of tied-weight decoders, 𝜇-Net can overcome the low training
fficiency problem and achieve not only accurate but also very efficient
erformances in medical image segmentation tasks.

Moreover, we also use 𝑝-value to measure the statistical significance
f improvements of our methods w.r.t. the baselines. Specifically, we
ind that the 𝑝-values of our 𝜇-Net-Hyb (resp., 𝜇-Net-Hyb++) w.r.t.

the baselines are between 0.2243 and 0.4236 (resp., between 0.1778
and 0.3684) on BraTS, between 0.0001 and 0.2803 (resp., between
0.00003 and 0.1402) on Cardiac, and between 0.0242 and 0.2008
(resp., between 0.0174 and 0.1532) on Liver, while the 𝑝-values of
our 𝜇-Net-Hyb (resp., 𝜇-Net-Hyb++) w.r.t. the baselines are all equal
r smaller than 0.0043 (resp., 0.0027) on Spleen. Consequently, we
an find that the majority of the 𝑝-values are lower than 0.05; since,
n the research areas of deep learning, it is impractical to always
chieve statistically significant improvements, having 𝑝-values lower
han 0.05 in most cases have been sufficient to prove that our proposed
-Net can achieve significant improvements w.r.t the state-of-the-art
egmentation baselines.

Finally, in order to visualize the superior performance of 𝜇-Net-Hyb
10

n medical image segmentation, Fig. 2 shows the segmentation results
f four segmentation baselines (i.e., FCN, U-Net, Attention U-Net, and
esUNet++), four deep supervised models (i.e., U-Net++, U-Net3+,
-Net, and MLDS-Net), and 𝜇-Net-Hyb on eight examples from four

atasets. Specifically, the segmentation results of the brain tumor im-
ges at the first two rows of Fig. 2 show that: (i) the segmentation
esults of FCN and U-Net are very incorrect among the whole tumor
egion, tumor enhancement region, and tumor core region, and even
he segmentation results are blurry; (ii) the segmentation results of the
our deep supervised models are relatively better than FCN and U-Net,
ut their segmentation results for the tumor core region are still not
deal (such as white boxes); and (iii) the segmentation performance
f 𝜇-Net-Hyb is much better than the four segmentation baselines and
he four deep supervised models, its segmentation results for the brain
umors are all very close to the ground truths. Similarly, from the
egmentation results of the cardiac images at the third and fourth rows
f Fig. 2, we have the following observations: (i) FCN and U-Net cannot
orrectly recognize and segment the heart; (ii) the four deep supervised
odels are better than FCN and U-Net, but their performances in

egmenting the edge areas of the heart are not satisfactory and even
ver-segmentation; and (iii) the segmentation results of the proposed
-Net-Hyb are best among all four segmentation baselines and four
eep supervised models and are all closest to the ground truths. Similar
bservations are also found for the spleen images, where 𝜇-Net-Hyb is

the only model that correctly segments the spleen with smooth edges
(such as the white boxes). Similar observations are also found for
the liver images, where 𝜇-Net-Hyb is the only model that correctly
segments the liver and liver tumor (such as the white boxes). There-
fore, these visualized observations greatly demonstrate again that by
the proposed semantically similar but not completely consistent deep
supervision mechanism, 𝜇-Net-Hyb, remedies the drawbacks of the
existing deep segmentation models and deep supervision models, and
achieves a much better performance in medical image segmentation
tasks, especially for small objects and objects with complex boundary
details.

4.5. Ablation studies

To further investigate the effectiveness and necessity of the Sim-
ilarity Principle of Deep Supervision and tied-weight decoder, abla-
tion studies are conducted with five deep supervision models that
use different pseudo-labels based on U-Net (resp., U-Net++), i.e., U-
Net-Deep (resp., U-Net-Deep++), U-Net-Auto (resp., U-Net-Auto++),
𝜇-Net-Seg (resp., 𝜇-Net-Seg++), 𝜇-Net-Rec (resp., 𝜇-Net-Rec++), and 𝜇-
Net-Hyb (resp., 𝜇-Net-Hyb++). The corresponding experimental results
are shown in Tables 4 (accuracy) and 5 (efficiency).

In Table 4, all five deep supervision models outperform U-Net (resp.,
U-Net++) over all four datasets in terms of all metrics, which proves
that the proposed deep supervision mechanisms are all effective to
improve the performance of U-Net (resp., U-Net++) in medical image
segmentation tasks. Specifically, we first compare the results of U-Net
(resp., U-Net++) with the five deep supervision models based on U-Net
(resp., U-Net++), where the deep supervision models outperform U-Net
(resp., U-Net++) on all datasets in terms of all metrics. This is because
deep supervision can early and directly enhance the feature learning
capability of the deep layers by adding additional supervision signals in
the expansive paths. Then, it is observed that U-Net-Auto (resp., U-Net-
Auto++) and 𝜇-Net-Rec (resp., 𝜇-Net-Rec++) consistently outperform
U-Net-Deep (resp., U-Net-Deep++) and 𝜇-Net-Seg (resp., 𝜇-Net-Seg++)
in Table 4. This is because the former uses pseudo-labels that are
semantically similar to the intermediate outputs, rather than the com-
pletely identical pseudo-labels used by the latter. Therefore, this proves
the correctness of the Similarity Principle of Deep Supervision, which
can make the generated pseudo-labels retain the diverse image details
as much as possible, thereby guiding intermediate predictions to retain
more details. Furthermore, we note that 𝜇-Net-Seg (resp., 𝜇-Net-Seg++)

and 𝜇-Net-Rec (resp., 𝜇-Net-Rec++) are always better than U-Net-Deep
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Table 4
Ablation studies in segmentation accuracy. imp. presents the performance improvements of 𝜇-Net-Hyb (resp., 𝜇-Net-Hyb++) with respect to U-Net (resp., U-Net++). The best results
are bold.

Anatomy BraTS Cardiac Spleen Liver

DICE PPV SEN IoU DICE PPV SEN IoU DICE PPV SEN IoU DICE PPV SEN IoU

U-Net [4] 0.7145 0.8408 0.7203 0.6651 0.9057 0.9045 0.9190 0.8754 0.8940 0.9133 0.8585 0.8362 0.8530 0.9268 0.8832 0.8289
U-Net-Deep 0.7245 0.8701 0.7315 0.6737 0.9252 0.9386 0.9327 0.8951 0.9246 0.9301 0.9311 0.8524 0.8539 0.9329 0.8838 0.8294
U-Net-Auto 0.7268 0.8713 0.7348 0.6764 0.9307 0.9401 0.9361 0.9013 0.9291 0.9315 0.9426 0.8664 0.8543 0.9330 0.8845 0.8351
𝜇-Net-Seg 0.7319 0.8774 0.7400 0.6810 0.9308 0.9435 0.9365 0.9015 0.9681 0.9401 0.9523 0.9065 0.8546 0.9333 0.8922 0.8371
𝜇-Net-Rec 0.7340 0.8807 0.7434 0.6836 0.9332 0.9455 0.9393 0.9024 0.9744 0.9652 0.9605 0.9525 0.8623 0.9347 0.8977 0.8375
𝜇-Net-Hyb 0.7384 0.8950 0.7436 0.6880 0.9360 0.9489 0.9486 0.9061 0.9768 0.9767 0.9722 0.9617 0.8926 0.9395 0.9330 0.8681

imp. 0.0239 0.0542 0.0233 0.0229 0.0303 0.0444 0.0296 0.0307 0.0828 0.0634 0.1137 0.1255 0.0396 0.0127 0.0498 0.0392

U-Net++ [17] 0.7192 0.8426 0.7233 0.6657 0.9111 0.9089 0.9312 0.8763 0.9230 0.9187 0.8925 0.8722 0.8615 0.9236 0.8972 0.8362
U-Net-Deep++ 0.7341 0.8705 0.7540 0.6820 0.9315 0.9395 0.9331 0.8994 0.9284 0.9651 0.9394 0.8827 0.8696 0.9253 0.8977 0.8450
U-Net-Auto++ 0.7368 0.8721 0.7609 0.6851 0.9319 0.9411 0.9381 0.8998 0.9345 0.9665 0.9478 0.8921 0.8743 0.9343 0.9027 0.8465
𝜇-Net-Seg++ 0.7391 0.8795 0.7617 0.6883 0.9336 0.9458 0.9392 0.9023 0.9720 0.9838 0.9692 0.9561 0.8757 0.9397 0.9042 0.8466
𝜇-Net-Rec++ 0.7420 0.8820 0.7637 0.6903 0.9368 0.9474 0.9465 0.9041 0.9782 0.9847 0.9747 0.9634 0.8783 0.9404 0.9070 0.8546
𝜇-Net-Hyb++ 0.7472 0.8873 0.7646 0.6962 0.9413 0.9649 0.9490 0.9135 0.9786 0.9854 0.9748 0.9640 0.8953 0.9441 0.9214 0.8725

imp. 0.0280 0.0447 0.0413 0.0305 0.0302 0.0560 0.0178 0.0372 0.0556 0.0667 0.0823 0.0918 0.0338 0.0205 0.0242 0.0363
Table 5
Ablation studies in training efficiencies. The best results are bold and the second best ones are underlined.

Anatomy BraTS Cardiac Spleen Liver

Avg.T(h) Epoch Tot.T(h) Avg.T(h) Epoch Tot.T(h) Avg.T(h) Epoch Tot.T(h) Avg.T(h) Epoch Tot.T(h)

U-Net [4] 0.1960 8 1.5679 0.0277 19 0.5269 0.0499 59 2.9462 0.1619 60 9.9216
U-Net-Deep 0.3778 14 5.2888 0.0555 39 2.1649 0.1076 55 5.9202 0.6589 31 21.9312
U-Net-Auto 0.6386 12 7.6635 0.0795 23 1.8286 0.1400 45 6.2980 0.8831 15 13.0363
𝜇-Net-Seg 0.4769 11 5.2463 0.0748 23 1.7211 0.1295 39 5.0524 0.4962 17 8.4356
𝜇-Net-Rec 0.5696 8 4.5569 0.0761 19 1.4450 0.1253 39 4.8880 0.5222 14 7.3112
𝜇-Net-Hyb 0.6470 7 4.5289 0.0841 13 1.0934 0.1459 21 3.0639 0.6145 10 6.1450

U-Net++ [17] 0.5984 42 25.1322 0.0750 42 3.1486 0.1057 53 5.6005 0.3391 45 11.8250
U-Net-Deep++ 0.8009 69 55.2636 0.0804 35 2.8157 0.1403 38 5.3312 1.4708 18 26.2477
U-Net-Auto++ 0.9990 42 41.9564 0.0945 32 3.0237 0.1769 32 5.6599 1.4315 13 18.3910
𝜇-Net-Seg++ 0.9067 41 37.1746 0.0853 31 2.6452 0.1609 32 5.1482 0.8051 25 20.1275
𝜇-Net-Rec++ 0.9472 40 37.8878 0.0919 21 1.9304 0.1647 25 4.1166 0.8247 27 22.2669
𝜇-Net-Hyb++ 1.0288 19 19.5476 0.1106 10 1.1056 0.1786 23 4.1078 0.8911 12 10.6932
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(resp., U-Net-Deep++) and U-Net-Auto (resp., U-Net-Auto++), because
the former introduces a tied-weight decoder to add additional recon-
structed supervision signals. Finally, we find that 𝜇-Net-Hyb (resp.,
𝜇-Net-Hyb++) consistently outperforms the other four deep supervision
models, because it combines 𝜇-Net-Seg (resp., 𝜇-Net-Seg++) and 𝜇-Net-
Rec (resp., 𝜇-Net-Rec++) with different detailed information that is
beneficial to the deep segmentation models, which can further expand
the diversity of detailed information of pseudo-labels, thereby better
guiding intermediate predictions to further improve the segmentation
performance.

Then, in Table 5, we observe that U-Net-Deep and U-Net-Auto can
improve the model’s convergence performance. This can be demon-
strated by comparing the 𝐸𝑝𝑜𝑐ℎ of U-Net-Deep in Table 5 and those of
M-Net and MLDS-Net in Table 3 (similar to U-Net-Auto). Specifically,
he model structure of the proposed strategy U-Net-deep is very similar
o those of M-Net and MLDS-Net (i.e., U-Net plus side projections or
utputs in the decoders), the only difference between U-Net-Deep and
-Net and MLDS-Net is that: in M-Net and MLDS-Net, there exists

emantic difference problem between their intermediate masks and
ntermediate predictions used to construct their intermediate learning
ignals, while the intermediate learning signals in U-Net-deep does not
ave the semantic difference problem. The results in Tables 3 and 5
how that by resolving the semantic difference problem, the 𝐸𝑝𝑜𝑐ℎ of
-Net-Deep is much lower than those of M-Net and MLDS-Net: 14 vs.
0 and 49 on BraTS, 39 vs. 50 and 57 on Cardiac, 55 vs. 83 and 115 on
pleen, and 31 vs. 51 and 56 on the Liver. Consequently, in Tables 3
nd 5, the 𝑇 𝑜𝑡.𝑇 of U-Net-Deep is much lower than those of M-Net and
LDS-Net on BraTS, Cardiac, and Spleen datasets. However, we also

eed to notice that solely relying on this improvement is not enough
o fully resolve the low-efficiency problem: when the increase of 𝐴𝑣𝑔.𝑇
verwhelms the decrease of 𝐸𝑝𝑜𝑐ℎ, the 𝑇 𝑜𝑡.𝑇 of U-Net-Deep may also
11

(

igher than those of M-Net and MLDS-Net (just like the case on Liver
ataset, where 𝑇 𝑜𝑡.𝑇 is 21.9312 for U-Net-Deep, while 12.9438 and
3.9832 for M-Net and MLDS-Net, respectively).

Therefore, we propose 𝜇-Net to use a tied-weight decoder to dra-
atically further decrease the numbers of convergence epochs and

nsure that the decrease of epochs is always much higher than the
ncrease of time-cost per epochs. Specifically, by using a tied-weight
ecoder, the numbers of convergence epochs of three versions of 𝜇-
et (i.e., 𝜇-Net-Seg, 𝜇-Net-Rec, and 𝜇-Net-Hyb) are all much lower

han those of U-Net-Deep and U-Net-Auto on all datasets in Table 5.
n addition, since the decrease of epochs is always much higher than
he increase of time-cost per epoch, the total training time of 𝜇-Net-
yb constantly outperforms those of all state-of-the-art advanced U-Net
odels (i.e., the conventional deep supervised models and Attention
-Net and ResUNet++) on all datasets. Consequently, all the above
bverses fully demonstrate that the explored U-Net-deep, U-Net-Auto
nd 𝜇-Net can solve the low learning efficiency problem. We have
o emphasize again that U-Net-deep and U-Net-Auto address the low
fficiency in most (but not all) situations, and only 𝜇-Net fully addresses
he low-efficiency problem.

Furthermore, by comparing the results of U-Net-Auto (resp., 𝜇-Net-
ec) with those of U-Net-Deep (resp., 𝜇-Net-Seg) in Tables 4 and 5 of

he revised manuscript, we can find that U-Net-Auto (resp., 𝜇-Net-Rec)
onstantly outperforms U-Net-Deep (resp., 𝜇-Net-Seg) in both segmen-
ation accuracy and training efficiency. We believe this is because the
imilar but not identical convolution and deconvolution procedures
ake the generated intermediate masks and intermediate predictions

n U-Net-Auto (resp., 𝜇-Net-Rec) not only contain semantics at the
ame depth but also capable of learning more diverse and task-specific
eatures than those generated by identical procedures in U-Net-Deep
resp., 𝜇-Net-Seg). According to these observations, we thus summarize
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Fig. 3. Similarity Principle of Deep Supervision vs. the state-of-the-art deep supervisions.
Fig. 4. 𝜇-Net using tied-weight decoder vs. 𝜇-Net using VAE decoder.
the Similarity Principle of Deep Supervision, which can be used to
measure the quality of the intermediate learning signals used in deep
supervised models, and will be beneficial for future research in deep
supervised segmentations.

Finally, to show that when using U-Net++ as the backbone, the
proposed strategies will also achieve similar improvements to those
using U-Net as the backbone, and in turn, prove the high adaptability
and scalability of our proposed strategies, we apply the proposed
strategies on U-Net++ and show the corresponding ablation study
results in Tables 4 and 5. By measuring the improvements (denoted
imp. in tables) of 𝜇-Net-Hyb and 𝜇-Net-Hyb++ w.r.t. U-Net and U-
Net++, respectively, we can discover that applying 𝜇-Net on U-Net
and U-Net++ actually obtain the similar extent of improvements in
segmentation accuracies, while the total time-costs of 𝜇-Net-Hyb and
𝜇-Net-Hyb++ are also similar (i.e., slightly higher or lower) to those
of U-Net and U-Net++, respectively. Therefore, the good adaptability
and scalability of our proposed strategies are proven. In addition, it
is also observed that 𝜇-Net-Hyb++ has longer training time-costs than
𝜇-Net-Hyb, this is because its backbone U-Net++ has much higher time-
costs than 𝜇-Net-Hyb’s backbone U-Net (i.e., 25.1322 vs. 1.5679 on
BraTS, 3.1486 vs. 0.5269 on Cardiac, 5.6005 vs. 2.9462 on Spleen,
and 11.8250 vs. 9.9216 on Liver); therefore, although 𝜇-Net-Hyb++
has applied tied-weight decoder to significantly decrease the training
time-cost, it is unrealistic to fully cover the efficiency gap caused by
the different backbones.

4.6. Similarity Principle of Deep Supervision vs. the state-of-the-art deep
supervision mechanisms

Further experiments are conducted to compare our proposed Sim-
ilarity Principle of Deep Supervision with the current state-of-the-art
deep supervision mechanisms, namely, U-Net-Deep, U-Net-Auto, U-Net
with Up (refer to M-Net [12] to up-sample the intermediate predic-
tions and compared with the ground truths), and U-Net with Down
(refer to MLDS-Net [14] to down-sample the ground truths and com-
pared with the ground truths), where the different deep supervision
mechanisms are respectively incorporated with U-Net to show their dif-
ferent capabilities in enhancing U-Net’s performances in medical image
segmentation with small objects and objects with complex boundary
12

details. The corresponding experimental results are depicted in Fig. 3.
Generally, as shown in Fig. 3, the model of incorporating U-Net with
our Similarity Principle of Deep Supervision can achieve much better
performance improvements than using the state-of-the-art models of
U-Net with Up, U-Net with Down, and semantically identical deep
supervision, in terms of all metrics on all four datasets. This finding
thus proves that the Similarity Principle of Deep Supervision is a
better choice for small objects and objects with complex boundary
details segmentation tasks than the state-of-the-art deep supervision
mechanisms. Specifically, both U-Net-Deep and U-Net-Deep outperform
the models of U-Net with Up and U-Net with Down. This shows that
compared with existing deep supervision models, the semantic differ-
ence between intermediate predictions and corresponding labels in our
deep supervision models is smaller, which can improve the model’s
learning ability and speed up the model’s convergence performance.
Furthermore, we note that U-Net-Auto is much better than U-Net-Deep
in all the cases, which is because U-Net-Auto uses pseudo-labels with
high semantic similarity rather than semantic identity for supervision,
preserving more and richer semantic information. In summary, these
findings clearly demonstrate the effectiveness and reasonableness of the
proposed Similarity Principle of Deep Supervision in achieving better
medical image segmentation performances than the state-of-the-art
deep supervision mechanisms.

4.7. Tied-weight decoder vs. the state-of-the-art VAE decoder

Similarly, to investigate the influence of different additional de-
coders on medical images for small objects and objects with complex
boundary information segmentation, we further conduct experiments to
compare our introduced tied-weight decoder with the state-of-the-art
and common VAE decoder module with U-Net, namely, compare 𝜇-
Net using a tied-weight decoder (i.e., 𝜇-Net-Rec) with 𝜇-Net using VAE
decoder (i.e., adding VAE decoder to U-Net after integrating the Simi-
larity Principle of Deep Supervision), the results are depicted in Fig. 4.
Generally, the results show that the model of combining U-Net and
our proposed Similarity Principle of Deep Supervision post-fusion tied-
weight decoder (denoted 𝜇-Net with tied-weight decoder) generally
outperforms the model of combining U-Net and the Similarity Principle
of Deep Supervision with VAE decoder module in terms of all metrics on
all four datasets, which prove that the tied-weight decoder can achieve
a more accurate medical image segmentation with small objects and
objects with complex boundary details than the state-of-the-art VAE

decoder module.
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Fig. 5. Performance of 𝜇-Net under different settings of loss-weights.

.8. Effect of varying loss-weights

As shown in Eq. (13), the final loss function of our optimal seg-
entation model 𝜇-Net-Hyb is affected by the weights of the individual

oss functions. Therefore, the values of 𝛼, 𝛽, 𝑎, 𝑏, 𝛾, 𝜉, 𝜆, 𝜔𝑖, 𝜂, and 𝜎𝑖
ll affect the training quality of the model and the final segmentation
erformance. We consider that each deep layer in the expansive path
o be equally important and therefore set both 𝜔𝑖 and 𝜎𝑖 to 1. Similarly,
e also believe that whether it is the pseudo-labels generated by the
-Net decoder for supervision or the pseudo-labels generated by the

ied-weight decoder for supervision, both contain useful information
or segmentation, and assume that they are of equal weight, so set
= 𝜉 = 1. Consequently, experiments are conducted to investigate

he effect of different loss weights on the model’s training quality in
erms of the average value of the four evaluation metrics, i.e., 𝑎𝑣𝑔_𝑚 =
𝐷𝐼𝐶𝐸+𝑃𝑃𝑉 +𝑆𝐸𝑁+𝐼𝑜𝑈

4 .
We select all the values of loss weights incrementally from 2 to 9

with a step of 1, and the extreme weights 1 and 10 are not shown here.
enerally, in Fig. 5, we observe that 𝜇-Net-Hyb obtains the largest seg-
ented evaluation metrics when the loss weights 𝛼, 𝛽, 𝑎, 𝑏, 𝜆, and 𝜂 are

set 5, 1, 1, 1, 9, and 6 on the BraTS dataset; the loss weights 𝛼, 𝛽, 𝑎, 𝑏, 𝜆,
and 𝜂 are set 7, 1, 4, 1, 9, and 6 on the Cardiac dataset; the loss weights
, 𝛽, 𝑎, 𝑏, 𝜆, and 𝜂 are set 3, 5, 2, 2, 8, and 6 on the Spleen dataset; the

loss weights 𝛼, 𝛽, 𝑎, 𝑏, 𝜆, and 𝜂 are set 6, 1, 3, 1, 9, and 6 on the Spleen
dataset, respectively, which are thus used as the final selected values.
Moreover, the results in Fig. 5 show as another important finding that
the segmentation metrics also improve with the increase of the value of
𝜆 within a certain range. This finding thus further proves that rational
using of the Similarity Principle of Deep Supervision instead of directly
using the highest weighted Similarity Principle of Deep Supervision can
improve the segmentation performance of 𝜇-Net-Hyb.

4.9. Strategies selection in practical usage

As demonstrated in our experimental studies, although all pro-
posed strategies (U-Net-Deep, U-Net-Auto, and 𝜇-Net) are applicable
and achieve satisfactory performances on all kinds of medical image
segmentation tasks, our experimental results show that 𝜇-Net generally
outperforms U-Net-Deep and U-Net-Auto in terms of both segmentation
accuracy and training efficiency among all kinds of medical image
segmentation tasks. Therefore, we suggest giving priority to using 𝜇-Net
on the clinical usages, no matter what kinds of medical images.

In addition, as stated in Section 1, 𝜇-Net not only can use U-
Net as the backbone but can also be used in most of the advanced
13
U-Net models to further improve their accuracy effectively; and our
experimental studies also demonstrate that by using U-Net++ as the
backbone segmentation model, the resulting 𝜇-Net-Hyb++ can further
achieve better segmentation accuracies than U-Net based 𝜇-Net-Hyb
with the cost of, however, higher training time-cost (due to the much
more complicated structure in the backbone); therefore, if the specific
piratical segmentation task has high requirements for segmentation
accuracy and has sufficient computing resources, the users can uti-
lize 𝜇-Net-Hyb++ to achieve more precious segmentations. Similarly,
if one wants to further improve the segmentation accuracies, more
complicated and advanced U-Net-based segmentation models, e.g., U-
Net3+ [13] and ResUNet++ [30], can be further used as the backbone
of 𝜇-Net to achieve this aim.

5. Conclusion and future works

In this work, we identify the problem of existing deep supervision
mechanisms, namely, semantic difference problem and low learning ef-
ficiency problem, and propose some deep supervised models to remedy
the problems and achieve a more effective and efficient medical image
segmentation. Specifically, we first propose U-Net-Deep and U-Net-
Auto to overcome the semantic difference problem. Then, we further
propose 𝜇-Net, which designs a Similarity Principle of Deep Supervi-
sion to improve the model’s segmentation performance and introduces
a tied-weight decoder to accelerate the model’s convergence perfor-
mance. Finally, we explore three different types of 𝜇-Net-based deep
supervision strategies. Extensive experimental studies are conducted on
three real-world medical image segmentation datasets with U-Net and
U-Net++ as backbones, and the results show that the proposed 𝜇-Net
can significantly outperform the state-of-the-art image segmentation
solutions in medical image segmentation tasks in terms of all met-
rics, and the Similarity Principle of Deep Supervision and tied-weight
decoder are all effective and essential for 𝜇-Net to achieve superior
segmentation performance and are applicable to all U-Net variants.

Despite achieving generally superior performance in medical image
segmentation tasks, we also observe in the experimental results that
the performance of all segmentation models, including 𝜇-Net, on the
BraTS dataset are much worse than those on the Cardiac, Spleen, and
Liver datasets. This is because the shape and appearance of brain
tumors in medical images are much more varied than those of the heart
and spleen, and the boundary information is more complex, so it is
more difficult for the deep model to learn its morphological features.
Therefore, it is interesting future work to further improve the deep
supervision mechanisms in 𝜇-Net to solve this problem, such as adding
some supervision signals appropriately in the extracting path, so that 𝜇-
Net is more applicable in the segmentation tasks of segmenting objects
with complex boundary information.
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