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Computer-aided diagnosis (CAD) methods such as the X-rays-based method is
one of the cheapest and safe alternative options to diagnose the disease
compared to other alternatives such as Computed Tomography (CT) scan,
and so on. However, according to our experiments on X-ray public datasets
and real clinical datasets, we found that there are two challenges in the current
classification of pneumonia: existing public datasets have been preprocessed
too well, making the accuracy of the results relatively high; existing models have
weak ability to extract features from the clinical pneumonia X-ray dataset. To
solve the dataset problems, we collected a new dataset of pediatric pneumonia
with labels obtained through a comprehensive pathogen-radiology-clinical
diagnostic screening. Then, to accurately capture the important features in
imbalanced data, based on the new dataset, we proposed for the first time a
two-stage training multimodal pneumonia classification method combining
X-ray images and blood testing data, which improves the image feature
extraction ability through a global-local attention module and mitigate the
influence of class imbalance data on the results through the two-stage
training strategy. In experiments, the performance of our proposed model is
the best on new clinical data and outperforms the diagnostic accuracy of four
experienced radiologists. Through further research on the performance of
various blood testing indicators in the model, we analyzed the conclusions
that are helpful for radiologists to diagnose.
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1 Introduction

Pneumonia refers to severe inflammation caused by infections inside the lungs, which
are crucial organs of the respiratory system. In particular, among diseases of infants and
young children, pneumonia has a high fatality rate. Among children under 5 years of age,
pneumonia accounts for 14% of all childhood deaths from the disease (Troeger et al., 2018).
Due to the growth stage of children, CT and other radioactive imaging methods should be
avoided. However, in clinical practice, we often need to accurately diagnose the type of
disease to be able to use targeted drugs to avoid the impact of antibiotic abuse and drug side
effects on children’s growth and development. Therefore, accurate classification of
pneumonia in children based on X-ray low-radiation imaging modalities is a challenge.
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With the development of deep learning technology, automatic
diagnosis and treatment technology based on deep learning has been
widely applied in the classification of children’s pneumonia. Most of
the studies on the classification of pneumonia focus on the two-class
problem of diagnosing whether a patient has pneumonia
(Baltruschat et al., 2019; Siddiqi, 2019; Liz et al., 2021), including
diagnosing whether a patient has epidemic pneumonia, COVID-19,
etc., and few studies focus on three-class problems (Rajpurkar et al.,
2017). Then, according to the results of these researches, the classic
Resnet can get a performance along 86% on the dataset of
Guangzhou Women and Children’s Medical Centre in China
(GZCMC). However, when we put the same model into the
actual clinical data of a medical institution similar to Guangzhou
Women and Children’s Medical Centre for a retrospective study, the
performance of the model dropped very sharply. Specifically, we
selected all X-ray images of infants and young children aged
0–14 who were cleared of pneumonia types through pathogen-
radiology-clinical diagnostic screening in the Women and
Children’s Medical Centre of Hainan Province from 2016 to
2021 as samples to test the effect of the Resnet model. We found
that the performance of the model dropped from 80 to 50.
According to related work and our experimental results, we
identify two challenges in pneumonia classification research: 1)
The existing public datasets have undergone too perfect
preprocessing and possible data selection. For example, in
Figure 1, the first row of overall image shooting locations is
relatively regular, concentrated on the lungs, and the image
abnormalities are more obvious. However, in actual clinical
practice, we often encounter the second row, where infants and
young children have different postures and shooting areas. There is
more irrelevant information than diagnosis. Therefore, we believe
that a model that achieves good results on such carefully selected and
preconditioned models is not well suited for clinical use. 2) The
existing model has poor feature extraction ability on real clinical
pneumonia X-ray images in the imbalanced dataset. Due to the
uneven quality of actual clinical data, the classification models of
existing related work have limited feature extraction capabilities in

unbalanced datasets, resulting in unsatisfactory performance of
pneumonia classification models. Therefore, to accurately,
automatically, and intelligently classify children’s pneumonia: in
fact, we first need a data set that is more representative of the actual
clinical situation, and second, we need a deep learning method that
has achieved good results on this clinical dataset.

Consequently, in this work, we collected X-ray images and blood
testing data of all infants and young children aged 0–14 years old
who had confirmed the type of pneumonia through pathogen-
radiology-clinical diagnosis screening in the Women and
Children’s Medical Centre of Hainan Province from 2016 to
2021. Compared to the previous single-modality pneumonia
dataset consisting only of X-ray images, we propose, for the first
time, a multi-modality pneumonia dataset that includes both X-ray
images and blood test data. We collect all data regardless of image
quality and effect. Furthermore, based on the above data sets, we
found that the existing resnet, denseness, and other baseline effects
are not satisfactory. We think that the quality of data in actual
clinical practice is often uneven, and we cannot select data in clinical
practice, so its characteristics are not obvious and stable enough.
Therefore, for the X-ray pneumonia images of children with uneven
quality levels, we propose a more effective and accurate automatic
classification method for children’s pneumonia in real clinical
situations–attention multimodal pneumonia diagnosis network
(AMPNet), which combines X-ray Pneumonia imaging and
blood testing information (Mardian et al., 2021) for accurate
pneumonia classification. Specifically, our model includes three
parts: image feature extraction based on local-global attention,
blood detection feature extraction, and modality fusion. In the
image feature extraction part, we propose a global attention
module and a local feature extraction module to improve the
model’s extraction of local subtle features and attention to global
important features to ensure that important image features can be
captured. In the feature extraction part of blood detection, we use
one-dimensional convolution to extract features. In the modality
fusion section, we fuse the features of the two modalities and
perform pneumonia classification. In addition, our two-stage

FIGURE 1
Comparison with adolescent and infant X-ray samples from the Guangzhou Women and Children’s Medical Center (GZCMC) Dataset. (A,B)
Represent samples the GZCMC dataset. (C,D) Represent samples from our dataset.
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training strategy can significantly reduce the impact of class-
imbalanced data on model performance.

The contributions of this paper are as follows.

• To overcome the existing dataset problem in the current
pneumonia classification research, we constructed a multi-
modal dataset that can represent the images and blood testing
data of children with actual clinical pneumonia. This dataset
collected X-ray images of all infants and young children aged
0–14 years old who had confirmed the type of pneumonia
through pathogen-radiology-clinical diagnosis screening in
the Women and Children’s Medical Centre of Hainan
Province from 2016 to 2021. This dataset will be
desensitized (i.e., removing sensitive information) and
released online after the acceptance of this paper.

• To address the poor feature extraction problem of the existing
deep classification models, we further proposed a satisfactory
method for the above-mentioned actual clinical X-ray children
pneumonia impact classification task. This method includes
image feature extraction based on local-global attention, blood
detection feature extraction, and modality fusion. The two-
stage training strategy is implemented to achieve better
performance on clinical data.

• Extensive experimental studies have been conducted on
GZCMC and our proposed datasets and the results show
the following: 1) Using the proposed method achieves the
best results among existing models on real pneumonia clinical
data. 2) Ablation experiments demonstrate that the modality
fusion method outperforms any single modality method, and
the three proposed improvements are effective and essential
for the model. 3) The results of our model are much higher
than the performance of four experienced radiologists, which
has good prospects for clinical practical application.

Overall, we present the dataset required for the experiments and
our proposed two-stage multimodal diagnostic model in Section 3.
In Section 4, we present all the experimental results we obtained and
give an explanation of the experimental results. In Section 5, we
analyze the experimental results in more depth and give possible
future research directions.

2 Related work

2.1 X-ray classification of pneumonia

In recent years, various CNN-based methods have been
proposed to address the problem of diagnosing pneumonia from
chest X-ray images (Bardou et al., 2018; Chouhan et al., 2020; Guan
and Huang, 2020). These studies are roughly divided into three
types: 1) Optimizing classical deep learning model; 2) Transfer
learning pre-training CNN architecture; 3) Integrated models of
multiple CNN architectures. In (Siddiqi, 2019; Stephen et al., 2019),
the authors proposed specialized CNN architectures for the
identification of pneumonia from chest X-ray images, which
provided promising classification performance. In order to
further improve the feature extraction ability of the model,
(Sitaula and Aryal, 2021), proposed a new Bag of Deep Visual

Words (BoDVW) method over deep features based on VGG16,
which can improve themodel’s ability to retain the semantics of each
feature map. In addition, (Sitaula and Hossain, 2021), utilized the
attention mechanism to capture the spatial relationship between
ROIs in X-ray images and improve the performance of pneumonia
classification. However, the architectures did not address time
complexity or generalization issues. Recently, various studies
(Kermany et al., 2018; Baltruschat et al., 2019) have shown that
utilizing transfer learning methods provides us with high
classification performance. We can leverage different pre-trained
CNN architectures without large labeled datasets. While these
methods are the most promising, we must consider the problems
that arise with the use of transfer learning. These problems often
appear when we choose the most appropriate fine-tuning layer
combination (Vrbancic and Podgorelec, 2020) and train complex
CNN architectures on small datasets. We also call them
regularization problems. In addition, the integrated approach also
showed excellent results in the diagnosis of pneumonia chest
radiographs. (Chouhan et al., 2020). trained AlexNet,
DenseNet121, Inception v3, GoogleNet 50, and ResNet-18
individually on the training subset of the GWCMC dataset.
Subsequently, they developed an ensemble model with majority
voting, achieving 96.4% accuracy (Liz et al., 2021). proposed an
ensemble deep learning model based on the CNNmodel and trained
it on the dataset they collected. They also verified the model on the
GWCMCdataset, and the AUC can reach 0.92. However, models are
affected by data generalization, dataset size, and time complexity. To
this end, (Vrbančič and Podgorelec, 2022), developed an ensemble
method based on stochastic gradient descent with thermodynamic
restart (SGDRE). And they got a two-class accuracy of 96.26% in the
GWCMC dataset. All the above studies are based on the CNN
structure and have not improved the internal structure of the model,
resulting in a limited performance of the model to extract features
from images. Although our work is also based on CNN, we found the
problem of insufficient feature extraction ability of the model in the
existing work and proposed a local and global attention module that
can extract more refined image features with the local attention
module and find “interesting” feature maps with global attention
module. Thus it can improve the classification performance of the
model.

2.2 Medical image and testing data diagnosis

It is common to study pneumonia classification tasks through
image feature extraction. However, these studies only use a single
form of information to diagnose pneumonia, ignoring other
more easily obtained clinical test result information.
Therefore, it is necessary to study the model through multiple
modalities in different dimensions and improve the diagnostic
performance. At present, there are many multimodal diagnostic
methods using clinical detection data (Liu et al., 2019). proposed
an extended learning system to detect the construction of medical
text data covering various physiological parameters of the human
body. Then they used the medical literature data from deep
learning networks to predict disease conditions (Ali et al.,
2020). combined information from sensor data and electronic
medical records to build a smart medical system for predicting
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cardiac disease using deep learning models. To classify liver
tumors, (Zhen et al., 2020), used MR images and multimodal
clinical data including text and laboratory test results to build a
deep-learning model. Similarly, like (Zhen et al., 2020), we also
use the feature extraction module to extract X-ray image features
and blood testing features and then fuse the two features for
classification tasks. Different from these works, we focus on X-ray
images and blood detection data in imbalanced data. Therefore,
we propose a two-stage training method: the first stage screens
patients for disease, and the second stage identifies the disease the
patient suffers from. This method has also been proven to
alleviate the multimodal data overfitting problem caused by
data imbalance. However, these studies tend to be
dichotomous diagnoses of disease. We know that the accuracy
of deep learning models decreases significantly with increasing
classification types (Rajpurkar et al., 2017). Especially in the
diagnosis of pneumonia, the distinction between bacterial
pneumonia and viral pneumonia is also a great challenge to
doctors in medical diagnosis. Therefore, multi-modal medical
diagnostic models for multi-classification are worth studying.

3 Materials and methods

3.1 Dataset introduction and clinical data
collection

Two datasets are used for the study: a public dataset from the
Guangzhou Women and Children’s Medical Centre in China
(GZCMC) 1 (Kermany et al., 2018) and a dataset on pediatric
pneumonia that we collected at the Hainan Women and Children’s
Medical Center (Women and Children’s Healthcare Center of Hainan
Province, Hainan Children’s Hospital, Children’s Hospital of Fudan
University at Hainan, Hainan Obstetrics and Gynecology Hospital).
We describe the two datasets in more detail below.

3.1.1 Guangzhou women’s and children’s
medical center (GZCMC) dataset

The Guangzhou Women and Children Medical Centre
dataset (GZCMC) contains 5856 frontal lobe pediatric chest
radiographs of pediatric patients aged between 1 and 5 years.
The dataset is divided into a training set and a test set, which are
currently publicly available. Through manual data selection and
expert proofreading, the training set contains 5232 pleural,
3883 pneumonia images (2538 bacterial and 1345 viral), and
1349 realistic normal images. The test set consisted of 624 images,
of which 390 are pneumonia images (242 bacterial and 148 viral)
and 234 are normal chest images. Two doctors labeled all the
images and a third doctor validated all the labels of the test data
set. It is unclear what (if any) additional clinical criteria are used
to determine these labels. The Guangzhou Women’s and
Children’s Medical Centre dataset meets the objectives of our
task and serves as a comparison dataset to the clinical datasets we
collected. In addition, the GZCMC dataset can be used as a pre-
training dataset to fine-tune the basis of the clinical dataset,
improving the model’s ability to capture pneumonia-related

features and further improving the accuracy of pneumonia
diagnosis.

3.1.2 Hainanwomen’s and children’smedical
centre dataset

Our clinical pediatric pneumonia data collected clinical
pneumonia X-ray images and blood testing results from children
aged 0–14 years from July 2016 to September 2021 through the
Women and Children’s Medical Centre of Hainan Province and
identified the causative pathogens by pathogenic examination to
determine the type of pneumonia. Specifically, the dataset contains
2301 normal images, 575 images of bacterial pneumonia, and
224 images of viral pneumonia, of which only bacterial and viral
pneumonia include blood test values. X-ray images range in width
from 512 to 3408 and in height from 512 to 3032. The dataset
contains more invasive information (e.g., the hand used by the
doctor to immobilize the child), and a wide age range of children. All
of these are more consistent with the characteristics of most truly
collected chest X-ray images of children. Blood testing contains
clinically obtained indicators such as leucocytes, neutrophils,
C-reactive protein, and calcitonin, which are useful in identifying
the type of pneumonia agent. The dataset contains a large amount of
authentic clinical data while ensuring patient privacy. The study was
approved by the Institutional Review Board of the HainanWomen’s
and Children’s Medical Centre and all written informed consent was
waived.

3.2 Data preprocessing

Our dataset images are stored as Digital Imaging and
Communications in Medicine (DICOM) files, and DICOM files
are converted to images using RadiAnt DICOM. The large
differences in the posture and size of the lung area in the imaged
children make the analysis of children’s lung X-ray images difficult.
To overcome this problem, we used a target detection algorithm
(FasterRCNN) to crop out the lung area and unified it into a
512*512 pixel image, with the data normalized. The blood
indicators are in excel file format, but only contain indicator data
for those suffering from pneumonia. To meet the needs of the model
we randomly generated blood indicator values for healthy children
based on normal blood indicator thresholds. Our dataset is divided
into three parts: 70% for training, 10% for validation and 20% for
testing, i.e. 2170 images for training, 310 images for validation and
620 images for testing.

3.3 Physician’s clinical blind review standard

To compare the validity of the AMPNet model, we compared the
diagnoses of four radiologists in an experiment. The clinical readings
in the experiment are performed independently by four radiologists,
all of whom had completed the national residency training, two of
whom are radiology residents (with 3 and 4 years of experience in
interpreting chest images, respectively), and two of whom are
attending radiologists (with 7 and 8 years of experience in

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Yao et al. 10.3389/fbioe.2023.1058888

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1058888


interpreting chest images, respectively). They are unaware of the
clinical information and past imaging findings.

3.4 Deep learning multimodal diagnostic
model

To expand the possibility of multimodal model research for
pneumonia diagnosis and solve the current problem of low
accuracy of multi-classification of pneumonia, we propose a
two-stage attention multimodal pneumonia diagnosis model
(AMPNet). First, we proposed the image feature extraction
module and the blood feature extraction module to extract the
features of the two modalities and perform feature fusion in the
fully connected layer. Second, to improve the ability of the model
to capture local features and deep global features for pneumonia
images, we proposed a local-global hybrid attention module.
Finally, we proposed a two-stage training strategy to alleviate
imbalanced datasets. The input of AMPNet combines X-ray
images and blood texting data. The structure of the AMPNet
model is shown in Figure 3 Specifically, the AMPNet is mainly
composed of three parts: an attention-based image feature
extraction module, a blood testing feature extraction module,
and a modal fusion module.

3.4.1 The attention multimodal pneumonia
diagnosis network
3.4.1.1 Attention-based image feature extraction module

The attention-based image feature extraction module uses
seresnet50 as the backbone network, adding a local information
extraction module and a global attention module. Seresnet50 is
the champion model of the Image Classification task in the
ImageNet 2017 competition. This is a fusion model of
the resnet50 network (He et al., 2016) and the

squeeze-and-excitation network (Hu et al., 2018) proposed by
Hu Jie et al. As shown in Figure 2, the left is the residual module
(ResNet Block) in the resnet50 network, and the right is the
squeeze-and-excitation residual module (SE-ResNet Block) in
the seresnet50 network. To capture features that are more
interesting for classification models in the global region, we
develop a new attention mechanism called global-local hybrid
attention, which uses global channel and spatial attention
modules to capture features that are important in both
channel and spatial dimensions for global deep features, while
also extracting local deep features by gridding shallow features.
As shown in the Figure 3, we insert the global channel and spatial
attention module between the second residual block and the third
residual block of the backbone network of seresnet50 and add the
local feature extraction module after the first residual block of
seresnet50. For the global channel and spatial attention module,
we extract the feature map F output by the second residual
module through the two dimensions of channel and space,
and obtains the attention feature F″.

F′ � Mc F( ) ⊗ F, F″ � Ms F′( ) ⊗ F′, (1)
Where F ∈ RC×H×W is taken as input,Mc ∈ RC×1×1 is a 1D channel

attention map, and Ms ∈ R1×H×W is a 2D spatial attention map, as
shown in the global attention module in Figure 3 Where ⊗ means
bitwise multiplication. When multiplying bitwise, the attention
values are broadcast accordingly: channel attention values are
broadcast along the spatial dimension and vice versa. F″ is the
output of the final refinement.

The channel feature extraction is as follows:

Mc F( ) � σ MLP AvgPool F( )( )( ) +MLP MaxPool F( )( ), (2)
The spatial information of the feature map F is aggregated

through the average pooling (AvgPooL) and maximum pooling
(MaxPooL) operations to generate two different spatial context
descriptions, which represent the average pooled features and the
maximum pooled features respectively. Then, these two descriptions
are fed forward into a multi-layer perceptron (MLP) network shared
by both to generate channel attention map Mc ∈ RC×1×1. Among
them, σ is the sigmoid function.

Spatial feature extraction is as follows:

Ms F( ) � σ f7×7 AvgPool F( );MaxPool F( )[ ]( )( ), (3)
Similar to the channel attention calculation, the average pooled

features and the maximum pooled features are stitched together, and
a 2D spatial attention map Ms ∈ R1×H×W is generated through the
convolutional layer. Among them, f 7 × 7 represents a convolution
operation with a convolution kernel size of 7*7.

In addition, for the local feature extraction module, the module
spatially divides the input feature into four local features F and performs
a two-layer convolution feature extractionmodule for each local feature
F. Finally, we fuse the output features of the global attentionmodule, the
features of the local feature extraction module, and the output of the
second residual block of the backbone network as the input of the
subsequent residual module. The whole attention-based image feature
extractionmodule fuses local and global features, so that themodule not
only pays attention to important global features but also does not miss
local small features that may affect diagnosis.

FIGURE 2
The schema of the original Residual module (left) and the SE-
ResNet module (right).
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3.4.1.2 Blood testing feature extraction module
As a one-dimensional vector data, the blood detection indicator

is prone to have the risk of over-fitting in the feature extraction
process. To reasonably extract the features of blood test indicators,
we use two layers of 1D convolution to extract one-dimensional
vector data in the feature extraction module of blood test indicators,
and there will be no overfitting problem.

3.4.1.3 Modal fusion module
In the modality fusion part, we fuse the output of the

attention-based image feature extraction module and the
blood detection indicator extraction module, and input two
fully connected layers to link the features to obtain the
classification result. Specifically, the fully connected layer fuses
the 12 features output from the attention-based image feature
extraction module and the 3 features output from the blood
detection indicator extraction module, and then extracts these
features and obtains the category they belong to.

3.4.2 Two-stage training strategy
Themodel uses a two-stage joint training method to sequentially

determine whether a patient has pneumonia. And it can further
diagnose which type of pneumonia (bacterial pneumonia, viral
pneumonia) the patient has (as shown in Figure 4). Specifically,
during training, we use AMPNet to classify the raw labeled data once
to distinguish normal samples from pneumonia samples. Then, the
pneumonia samples from the first-stage classification are used as
input to AMPNet to distinguish specific pneumonia types. In the
first stage, we use the cross-entropy loss. In the second stage, we use
focal loss (Lin et al., 2017) to classify the imbalanced harder samples.
After a two-stage training strategy, the model obtains the final
classification results (normal, bacterial pneumonia, and viral
pneumonia). During testing, the models are tested in the same
two-stage strategy. Furthermore, to further address the class
imbalance problem of pneumonia samples, we use Mixup

(Zhang et al., 2017) and Cutmix (Yun et al., 2019) data
augmentation methods in two stages.

The details of the training are as follows: In the first stage, our
learning rate is 0.05, and in the second stage, our learning rate is
0.005. The optimizer of both stages is SGD optimizer, and the
training is 70 epochs. In addition, the model also adds Mixup, Cut,
and Focal Loss, where the parameter of mixup is set to 0.06 and
cutmix is set to 0.01, and focal loss is only used in the second stage
with its gamma parameter set to 3, 0.25.

3.5 Computer hardware and software

All models are implemented using PyTorch and run on a server
with 8 Nvidia GeForce 2080 GPUs. Each graphics card has 8192M of
memory and the server has an Intel(R) Xeon(R) Silver 4110 CPU with
2.10GHz and 16G of RAM. In terms of software configuration, the
CUDA version of the server is 10.2, and all codes are implemented in
the Python language based on the PyTorch framework. The main
Python libraries involved in the experiments are Numpy (for matrix
operations), PIL (for reading, processing, and saving medical images),
wandb (for tracking and analyzing experimental procedures), and
torchvision (an image processing library related to PyTorch).

3.6 Evaluation indicators

To show the effectiveness of our models, we use the precision (Pre),
recall (Rec), and F1 score (F1). Specifically, accuracy is a standard for
measuring the percentage of correctly classified samples out of the total
number of samples. Precision measures the percentage of true positive
samples of all predicted positive samples. Recall has evaluated the
probability that positive samples are correctly classified as positive.
F1 score is the harmonic mean of Precision and Recall, which thus can
evaluate the model’s performances more comprehensively from the

FIGURE 3
MPNet model structure.
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perspectives of both Precision and Recall. The higher the values of these
metrics are, the better the performance is. Formally.

Pre � TP

TP + FP
, (4)

Rec � TP

TP + FN
, (5)

F1 score � Pre + Rec

2 p Pre + Rec( ) �
2 p TP

T + P
, (6)

Where TP, FP, and FN are the number of true positive points, false
positive points, and false negative points, respectively. T is the number
of ground truth points of that class, and P is the number of predicted
positive points. Due to the imbalanced data problem in the clinic
pneumonia X-ray dataset, i.e., healthy data is more than pneumonia
data, the general accuracy metric cannot adequately evaluate
pneumonia classification performance. Furthermore, our goal is to
achieve a three-class task that maximizes the true positive (TP) rate
for pneumonia diagnosis. Therefore, we selected the F1-score, which
balances recall and precision to evaluate TP, as our evaluation metric.

4 Results

4.1 Comparison of diagnostic performance
of deep learning models under different
datasets

As shown in Table 1, among the four commonly used
convolutional neural network classification models, Seresnet50 has
the best classification results in the Guangzhou Women and
Children’s Medical Center Public Dataset (GZCMC). Average

F1-score: 0.8420, Normal F1-score: 0.9488, Bacterial F1-score:
0.8660, Viral F1-score: 0.7111. There are good classification effects
on all four models. However, when we performed the same
classification experiments on a dataset collected by the Hainan
Women’s and Children’s Medical Centre, which uses the pathogen-
radiology-clinical diagnostic screening for definitive pneumonia
classification, problems occurred. We found that the classification
results decreased by at most 0.1933 in the average F1-score (on the
VGG model). And the evaluation metric of each class decreased,
especially in bacterial pneumonia and viral pneumonia (on the
VGG model bacterial F1 -score decreased by 0.2396, and viral
pneumonia even decreased by 0.3231). This suggests that although
existing methods show good performance on public datasets, the
performance is spurious, especially in distinguishing bacterial
pneumonia from viral pneumonia. However, Seresnet50 has the
highest F1-score for each class regardless of which dataset. This is
one of the reasons why we propose that AMPNet choose it as the
backbone network, the theoretical part of which has already been
mentioned in the previous section. In conclusion, we find through
rigorous experiments that the accuracy of the deep learning model in
actual clinical practice is not high. This also shows that the actual
disclosed method is difficult to apply in actual clinical practice.
Therefore, in response to this problem, we carry out a study on the
diagnosis of actual clinical pediatric pneumonia.

4.2 Comparison experiment of pneumonia
diagnosis model based on X-ray image

To verify the capability of our proposed two-stage attention model
for X-ray image feature extraction, we compared our model with the

FIGURE 4
Train represents the two-stage structure of network training. First, the presence or absence of pneumonia is classified. Second, the type of
pneumonia is classified. The test shows that we adopt a two-stage structure in the network test.
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current SOTAmodels for pneumonia X-ray image diagnosis. Chouhan
et al. (Chouhan et al., 2020) individually trained AlexNet, DenseNet121,
Inception v3, GoogleNet50, and ResNet-18 on the training subset of the
GWCMC dataset, and subsequently developed an ensemble model by
majority voting. This model is called Multi-mode. CheXNet (Rajpurkar
et al., 2017) is a method proposed by Rajpurkar P et al. based on the
Densenet121 model. And it uses the Adam optimizer after ImageNet
pre-training. It is a classic method for pneumonia diagnosis. (Vrbancic
and Podgorelec, 2020). proposed to use a transfer learning-based
approach by fine-tuning the medical dataset after pre-training with
the ImageNet dataset. Then, Ayan et al. propose a convolutional neural
network (CNN) ensemble method PNet (Ayan et al., 2022), which pre-
trained on the ImageNet dataset were trained with the appropriate
transfer learning and fine-tuning strategies on the chest X-ray dataset.
To satisfy the requirements of the experiments, we choose to fine-tune
the fully-connected layers on our dataset after pre-training on the
GZCMC dataset.

The comparison experiment results are shown in the Table 2, and
the training process of each model is shown in the Figure 5. During the
training process, both the training loss and the verification loss
gradually decrease and level off with each round. Although the
verification loss fluctuates greatly for individual models in the initial
stage, it still tends to be flat overall. The overall trend of training F1-
score and verifying F1-score curves is also gradually increasing.
However, in the verification F1-score curve, the transfer learning
model shows a downward trend in the last 15 epochs, which may
be the overfitting of the transfer learningmodel, resulting in a decline in
the F1-score. In the comparative experiment results, the classification
results of our model are improved by 1.86% compared with the SOTA
model. On the one hand, the reason for this improvement is the
proposed two-stage method reduces the difficulty of the model to
directly perform three classification tasks. On the other hand, by
distinguishing whether there is pneumonia or not at first, we reduce
the missed diagnosis rate of pneumonia in patients. Our model
improves the accuracy of the diagnosis of normal patients, which is
3.67% higher than the SOTA model. Furthermore, our model

significantly improved the diagnosis of bacterial pneumonia
(bacterial F1-score improved by 11.02% over the SOTA model). In
general, our model outperforms the current SOTA model in overall
diagnostic results for the lung X-ray imaging diagnosis task, which
proves that our two-stage attention model for pneumonia diagnosis
research is effective.

4.3 Ablation experiment of the two-stage
multimodal pneumonia model

In this set of experiments, we first verified the effectiveness of
our proposed multimodal model. As a result, we designed only
images and blood detection vectors to compare two unimodal and
multimodal models under a two-stage model. In addition, we also
verify the effectiveness of our proposed modules based on
multimodality, including the local attention module and the
global attention module to improve feature extraction ability.
Mixup and Cutmix hybrid data enhancement module and Focal
loss module proposed for sample imbalance are also included.

In Table 3, the results in the multi-modal validation section show
that multimodality has a significant improvement compared to single-
modality. In terms of the average F1-score indicator, multimodality has
an average improvement of 3.19% over blood detection vector
modalities, and an increase of 4.03% compared with the imaging
modality only. Especially in the diagnosis of viral patients, the
multimodal model has a significant improvement. The multimodal
viral F1-score is 17.03% higher than the blood detection vectormodality
and has an improvement of 13.9% compared to the image mode. The
single modality can only distinguish whether there is pneumonia, but
cannot distinguish whether it is viral or bacterial pneumonia. Even if the
single modality has a good effect on bacterial diagnosis, it can be
deceptive. The model is more likely to determine classification
according to the party with the larger number of samples
(i.e., bacterial pneumonia) because the samples are quite different
and the information is incomplete. Therefore, we can conclude that

TABLE 1 Classification results of deep learning models under different datasets.

Class Metric VGG19 Densenet121 Resnet50 Seresnet50

Ourdataset GZCMC Ourdataset GZCMC Ourdataset GZCMC Ourdataset GZCMC

Normal Precision 0.9127 0.8974 0.9367 0.8987 0.9498 0.8912 0.9629 0.9342

Recall 0.8989 0.9502 0.8882 0.9638 0.8896 0.9638 0.9055 0.9638

F1-score 0.9057 0.9231 0.9118 0.9301 0.9187 0.9261 0.9333 0.9488

Bactieral Precision 0.5891 0.8241 0.5814 0.8435 0.6279 0.8308 0.6434 0.8557

Recall 0.6281 0.8725 0.6637 0.8947 0.6807 0.8947 0.7034 0.8765

F1-score 0.6080 0.8476 0.6198 0.8684 0.6532 0.8616 0.6721 0.8660

Viral Precision 0.3250 0.7070 0.3500 0.7820 0.2750 0.7711 0.3000 0.7395

Recall 0.3171 0.5914 0.4516 0.6420 0.5789 0.6031 0.5455 0.6848

F1-score 0.3210 0.6441 0.3944 0.7051 0.3729 0.6769 0.3871 0.7111

F1-score(avg) 0.6116 0.8049 0.6420 0.8354 0.6483 0.8215 0.6642 0.8420

D-value 0.1933 0.1934 0.1732 0.1778
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multi-modal data brings more dimensional and rich information to the
model than single-modal data. Therefore, the diagnostic model can
integrate more data to improve the diagnostic accuracy of the
pneumonia model. And it greatly improves the diagnostic
performance for bacterial pneumonia and viral pneumonia, which
are also difficult for doctors to distinguish.

In addition, in themodelmodule validation part of Table 3, the data
of each module can show the effectiveness of module adding. And our
proposed AMPNet has the best effect (average F1-score: 0.7781, normal

F1-score: 0.9978, bacterial F1-score: 0.8405, viral F1-score: 0.4938).
First, the data augmentationmodule ofMixup andCutmix has themost
significant overall improvement in model diagnosis. The average
F1 score is improved by 4.54% relative to the base multimodal
model. This shows that this data enhancement method can greatly
improve the imbalanced data and X-ray clinical pneumonia data.
Second, the local and global attention modules also have a good
effect on the improvement of the overall performance of the model
diagnosis. The average F1 score is improved by 3.73% relative to the

TABLE 2 Comparative experiment of X-ray diagnostic model of pediatric pneumonia, where the bold values (i.e., Ours (image)) are the best results using only
single-modal data of images on our model, and Ours (multimodal) represents the best results by using multi-modal data of images and blood detection indicators
on our model.

Method F1-score(avg) Normal Bacterial Viral

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Multi-model 0.6645 0.8865 0.9227 0.9042 0.7519 0.6063 0.6713 0.3500 0.5185 0.4179

CheXNet 0.6735 0.9074 0.98 0.9423 0.7317 0.6261 0.6748 0.5691 0.3125 0.4035

Transfer learning 0.6696 0.8981 0.9432 0.9201 0.7064 0.5969 0.6471 0.4594 0.4250 0.4416

PNet 0.6562 0.9258 0.8945 0.9099 0.5891 0.6609 0.6229 0.4250 0.4474 0.4359

Ours (image) 0.6921 0.9960 0.9588 0.9790 0.7012 0.8915 0.7850 0.4167 0.2500 0.3125

Ours (multimodal) 0.7781 0.9968 0.9956 0.9978 0.8438 0.8372 0.8405 0.4878 0.5000 0.4938

FIGURE 5
The loss and F1-score of the training process in the comparison experiment model, where (A) is the training loss, (B) is the validation loss, (C) is the
F1-score of training samples, and (D) is the F1-score of validation samples.
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base multimodal model. In addition, the performance of adding two
modules is better than adding only one module, which also shows the
effectiveness of three modules in improving the performance of the
model. At the same time, it can be seen from the attention map of each
model in Figure 6 that our proposed local overall attention module can
learn features that are useful for model diagnosis more accurately.
The attention map is no longer a piece of low-weight or high-weight
but is distributed on both sides of the lung in a focused manner. This is
also in line with the physician’s experience in X-ray reading of
pneumonia.

4.4 Blind review of diagnostic results by
radiologists

In this part, we make clinical diagnoses on the data of the Hainan
Women’s and Children’s Medical Centre with the help of doctors. And
we also explore the accuracy of doctors’ diagnoses based on the Hainan
Women’s and Children’s Medical Centre dataset with other clinical
diagnosis information. Four radiologists with different seniority reviewed
the patient’s X-ray images and blood tests to make diagnoses. Due to
limited physician review efforts, we randomly selected half of the patient

TABLE 3 Ablation experiment of the two-stage multimodal pneumonia model, where bold values are the best results.

Class Module F1-
socre(avg)

Normal Bacterial Viral

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

Modal image 0.6821 0.9998 0.9673 0.9834 0.7174 0.9496 0.8173 0.5000 0.1628 0.2456

blood 0.6905 0.9899 0.9967 0.9923 0.7812 0.9495 0.8571 0.4615 0.1395 0.2143

multi 0.7224 0.9807 0.9737 0.9766 0.7438 0.8561 0.7959 0.4285 0.3488 0.3846

Module FL 0.7426 0.9998 0.9744 0.987 0.7692 0.6977 0.7317 0.4179 0.6512 0.5091

Data Mix 0.7678 0.9998 0.9959 0.9979 0.8346 0.7986 0.8162 0.4509 0.5349 0.4894

GLA 0.7597 0.9983 0.9836 0.9917 0.8014 0.7841 0.7927 0.4444 0.5581 0.4948

FL + DataMix 0.7719 0.9998 0.9967 0.9989 0.8614 0.7692 0.8127 0.4028 0.6744 0.5043

FL + GLA 0.7695 0.9999 0.9987 0.9993 0.8969 0.6793 0.7731 0.4125 0.7674 0.5366

GLA +
Data Mix

0.7694 0.9998 0.9930 0.9954 0.7746 0.8462 0.8088 0.4872 0.5219 0.5039

ALL(ours) 0.7781 0.9968 0.9956 0.9978 0.8438 0.8372 0.8405 0.4878 0.5000 0.4938

FIGURE 6
Attention map heatmap on three different models.
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data in the testing set. Two of the doctors are radiology residents
(Residents 1 and 2 have 3 and 4 years of chest image interpretation
experience respectively). The other two are attending radiologists (8 and
7 years of chest image interpretation experience for Attending 1 and
2 respectively). They are all blinded to clinical data and previous imaging
findings. The results of the blind review are shown in Table 4, among
which the attending doctor 1 has the best diagnosis results. (F1-score
(avg): 0.5970, normal: precision 0.9039, recall 0.9119, F1- score 0.9079,
bacterial: precision 0.5312, recall 0.7083, F1-score 0.6071, virality:
precision 0.4000, recall 0.2105, F1-score 0.2759). Figure 7 shows the
confusion matrix of the results of each physician’s review. According to
the diagnosis results of the three groups, physicians have a considerable
ability to diagnose whether the patient has pneumonia. But when
physicians face the diagnosis of bacterial pneumonia and viral
pneumonia, the results are more dependent on seniority experience.
Specifically, the doctor with the longest experience is better at
distinguishing bacteria from pneumonia (average F1-score of the four

physicians, attending 1:0.5970, attending 2:0.4854, resident 1:0.4494,
resident 2:0.5396). According to the diagnosis results of all physicians
in the chart, it can be concluded that physicians with relatively high
seniority have higher overall accuracy, which is in linewith the physician’s
review rules. However, the best results which doctors came to by
reviewing imaging and blood test data are still not as accurate as
those obtained by deep learning models from Guangzhou Women’s
and Children’s Medical Center (GZCMC) and Hainan Women’s and
Children’sMedical Centre data. Therefore, it ismeaningful for us to study
a pneumonia diagnosis model with better performance.

4.5 Pneumonia Diagnostic Model
Experiment Guides Clinical Practices.

In order to explore the influence of various physiological indicators
of blood detection on the pneumonia diagnosis model, whether various

TABLE 4 Diagnostic results of blind reviews by doctors with different seniority.

Method F1-score(avg) Normal Bacterial Viral

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Attending 1 0.5970 0.9039 0.9119 0.9079 0.5312 0.7083 0.6071 0.4000 0.2105 0.2759

Attending 2 0.4854 0.7904 0.8916 0.8380 0.4063 0.5778 0.4771 0.3000 0.0923 0.1412

Resident 1 0.4494 0.9869 0.8100 0.8898 0.1563 0.6667 0.2532 0.2000 0.2105 0.2051

Resident 2 0.5396 0.8253 0.9497 0.8832 0.5781 0.4933 0.5324 0.3000 0.1538 0.2034

TABLE 5 Diagnostic results of blind reviews by doctors with different seniority, where bold values are the best results.

Indicators F1-score(avg) Normal Bacterial Viral

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Wo WBC 0.7222 0.9979 0.9940 0.9956 0.8198 0.7054 0.7583 0.3448 0.5000 0.4082

Wo Neut 0.7274 0.9892 0.9926 0.9909 0.8151 0.7519 0.7823 0.3600 0.4500 0.3999

Wo CRP 0.7397 0.9986 0.9978 0.9989 0.8349 0.7054 0.7647 0.3770 0.5750 0.4554

Wo PCT 0.7361 0.9984 0.9978 0.9989 0.8381 0.6822 0.7521 0.3692 0.6000 0.4571

Ours 0.7781 0.9968 0.9956 0.9978 0.8438 0.8372 0.8405 0.4878 0.5000 0.4938

FIGURE 7
Confusion matrix of the diagnostic results of blind reviews by doctors with different seniority.
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detection indicators can provide more feasible suggestions for doctors’
clinical diagnosis under the results of the deep learning model. We
eliminated the factor of age and performed four groups of ablation
experiments for the remaining indicators, namely, without white blood
cells (Wo WBC), without neutrophils (Wo Neut), without C-reactive
protein (Wo CRP), without procalcitonin (Wo PCT).

Based on the analysis of the experimental results in Table 5, we
found that the single absence of each of the four blood examination
indicators showed different degrees of decrease in the accuracy of the
diagnostic results. It confirms that the combined analysis ofWBC,Neut,
CRP, and PCT is significantly effective in improving the accuracy of
pneumonia diagnosis in medicine. However, it is medically impossible
to state the extent towhich each indicator affects the diagnostic result. In
the results of the ablation experiment in Table 5, we can see that the
Neut indicator is the most significant decrease in the overall
classification effect in the task of identifying healthy, bacterial
pneumonia, and viral pneumonia (5.58% overall decrease in the F1-
score (avg)). It indicates that Neut as an important component of total
leukocyte count is more effective in diagnosing the three categories of
healthy, bacterial, and viral pneumonia relative to the other three
indicators. According to the experimental results, the Wo WBC
indicator has a greater impact on the diagnosis of bacterial
pneumonia than the Wo Neut indicator, which is supported by
having the minimum p-value between their missing experiments as
0.2962, proving that the WBC indicator has a greater value in bacterial
diagnosis. In addition, the minimum p-value between the results of the
Wo Neut and Wo CPR is 0.1781, proving that the Wo Neut indicator
have a greater impact on the diagnostic effect of viral pneumonia than
the Wo CPR indicators. Please do note that although the p-values
between the results four blood-related indicators are generally larger
than the “gold standard” (i.e., p-values are generally higher 0.05), the
p-values are small enough to show the different influence (even if the
differences may not be statistically significant) of these four blood-
related indicators on pneumonia diagnosis.

5 Concusion and future work

In our study, by comparing the pathogen-radiology-clinical
diagnostic screening dataset with existing public datasets under
commonly used deep learning models, we identified the problem
that current public data are unreliable. To investigate more efficient
and accurate models based on existing clinical data, we propose has
two-stage attention multimodal pneumonia classification model.
Then, our model achieves state-of-the-art results on the task of
diagnosing pneumonia on lung X-ray images, with an average F1-
score improvement of 2.76% compared to existing SOTA work. At
the same time, we found that the two-stage strategy can reduce the
misdiagnosis rate of the pneumonia model. Our proposed two-stage
model is effective for difficult clinical datasets. Then, we
demonstrate the effectiveness of each module of the AMPNet
model through ablation experiments. Overall, our study provides
a plausible explanation for the dataset study and for the first time
proposes an excellent multimodal pneumonia diagnosis model. At
the same time, the model outperformed the blind review results of
radiologists by a wide margin. Another contribution of our study is
on experiments and statistical analysis of the impact of blood test
indicators on classification results. Further, we propose possible

recommendations that could provide guidance for professional
radiologists in the diagnosis of pneumonia, especially bacterial
and viral pneumonia. These recommendations provide a feasible
direction for future research on pneumonia diagnosis.

Our study provides a more efficient model and some promising
recommendations for physicians currently diagnosing pediatric
pneumonia. However, we have not thought of a better solution for
the current extremely imbalanced pneumonia data. Especially when
bacterial pneumonia and viral pneumonia are indistinguishable, the
data gap between bacterial pneumonia and viral pneumonia is too large.
This situation is very common in clinical, and it is also a problem that
we need to further solve.
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