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ABSTRACT

A coronary artery calcium score (CACS) is a vital measure
to screen individuals at risk for early coronary heart disease.
However, as the main evaluation system of CACS, the Agat-
ston score computed from CT images via HU-thresholding
may vary significantly even for the same individual as the
protocol of image acquisition changes (e.g., reconstruction
kernels). This may harm the compatibility of CACS, when
evaluated in different health facilities at different times. To
tackle this issue, we propose the robust Agatston score (RAS),
wherein we predict the calcification level per pixel via deep
learning, rather than directly thresholding the HU value from
CT images, as we do for the classic Agatston score. In this
way, we make the CACS more robust to the change of acqui-
sition protocols, and let the comparison among CACS from
various sources easier. Experimental results show that our
method can improve the CACS level accuracy from 64.21%
to 95.78%. Code is available at https://github.com/
lucas-dw/ras.

Index Terms— Coronary Artery Calcium Score, recon-
struction kernel, deep learning, CT image, Agatston score

1. INTRODUCTION

The prevalence of the Cardiovascular Disease (CVD) is
49.2% overall in recent years and it increases with age [1].
This kind of disease often increases the incidence of angina
pectoris, myocardial infarction, heart failure and sudden car-
diac death, which is a potential threat in daily life. The
coronary artery calcium score (CACS) obtained by computed
tomography (CT) scanning is a common indicator for assess-
ing the risk of cardiovascular disease, wherein the Agatston
score (AS) is the main evaluation system [2, 3].

However, various acquisition methods of the CT images,
such as different reconstruction kernels, can affect the CACS
drastically[4], where soft kernels (i.e., B20f) improved CACS
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Fig. 1. Overview of proposed method (c) from sharp kernel,
and comparison using the classic Agatston score with (a) from
a soft kernel (GT), and (b) from sharp kernel (Baseline). AS
refers to Agatston score and Level refers to CACS level, both
of which are calculated from a total CT series.

accuracy while sharp kernels (i.e., B46f) degraded the pre-
cision [5]. This is because in the classic Agatston score,
calcification level of a certain pixel is determined via HU-
thresholding, therefore, the change of CT image acquisition
protocols would lead to the variability of HU value even
for the same patient, leading to incomparability of Agatston
scores (Fig. 1). In a word, there is an obvious need for a
more reliable method than the classic Agatston score, which
is more robust against the change of acquisition protocols,
especially for the variability of reconstruction kernels. This
fact inspires our proposed robust Agatston score (RAS).

Deep learning has been popular for semantic segmenta-
tion in medical images these years, such as the well-known U-
Net [6]. Several deep models are used to locate the coronary
calcification regions in non-ECG-gated CT imagess [7, 8, 9],
and naturally, to compute the CACS [10]. Generally, calcifi-
cation regions are predicted by a U-Net, then the calcification
levels (from level 0 to level 4) are obtained by HU threshold-
based method. These methods could yield promising results
when acquisition protocols are stable, in the sense of directly
comparing one CACS to another, e.g. in a follow-up study,
but will probably fail when acquisition protocols vary largely.
To this end, one possible pipeline would be generating soft
and thin series (ideal for computing CACS) from any origi-
nal series using deep-learning models such as GAN [11], and
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then calculate the classic Agatston score. Although this work
reduces CACS errors, it deciphers the original data structure
information and increases unreliability, while still being af-
fected by the reconstructed kernels. However, we find that it
is possible to directly predict the pixel-wise calcification level
from original CT series, which is the very approach that we
adopt to realize RAS against various CT image acquisition
protocols.

The main contribution of this work is three-fold: 1) We
proposed directly predicting the calcification level using deep
semantic segmentation models with designed multi-losses to
realize the robust Agatston score (RAS) against any recon-
struction kernels. 2) We performed a detailed ablation study
of our method to verify the contribution of each component,
and verify the generalization for different segmentation net-
works. 3) We conducted extensive experiments and showed
that our method can greatly improve the calcification level ac-
curacy compared to the HU-based classic Agatston score.

2. METHODS

2.1. Method Overview

We propose RAS (Fig. 2) against the change of different re-
construction kernels in CT image acquisition and compare
with the HU threshold-based method for AS acquisition. As
shown in Fig. 2, first, we utilize the CT series reconstructed
by soft kernel and the well-labeled masks that locate the calci-
fication regions to create the ground-truth masks (GT masks),
which contain the calcification level for each pixel. Second,
we adopt a series of deep semantic segmentation models to
predict the calcification level of each pixel in CT scans of
sharp kernel. Third, we adopt various loss functions to fur-
ther improve the performance. Finally, we use the predicted
calcification level to calculate the Agatston score as RAS and
compare with the classical Agatston score (as our baseline).

2.2. Robust Calcification Level Prediction

The classical Agatston score from the HU-threshed CT im-
ages usually does not perform well in the face of changes in
reconstruction kernels (especially sharp kernels). To improve
the robustness of the Agatston score, we adopt the deep model
to directly predict pixel-wise calcification level. Specifically,
a total of five-class calcifications are considered ranging from
level 0 to level 4. Therefore, the calcification level estimation
has been transferred to a semantic segmentation task, where
the variations among different CT image acquisition proto-
cols could be eliminated by deep learning. We assume that
the input x ∈ RH×W is a CT image. Then, we define a seg-
mentation model F (·) to obtain a predicted calcification level
map ẑ followed by a softmax activation function of the same
resolution as x. Further, we optimize the model using cross-
entropy loss and Dice loss as follows:

L = Lce (ẑ, z) + Ldice (ẑ, z) , (1)

CACS Error
32.48 (Ours)

282.99 (Baseline)

Agatston Score
246.98
(GT)

Multi-loss design:
CE loss

Dice loss
Information Gain loss

Input CT series (sharp kernel) CT series (soft kernel) Mask (Calcification region)

Calcification level  (GT)

HU thresholding &
Quantization

Training

Level 0 Level 1 Level 2 Level 3 Level 4 Background Calcification

Deep semantic
segmentaion modelPredicting

Calcification level  (Pred.)

Agatston Score
279.46
(Ours)

Agatston Score
529.97 (Baseline)

Fig. 2. Overview of proposed method and comparison with
the classic CACS directly from sharp series (baseline).

where ẑ = F (x) and z ∈ {0, 1}5×H×W is the ground-truth
with 5 classes. In addition, U-Net is mainly adopted due to its
high-performance and robustness to noise in medical image
analysis. Besides, other segmentation models such as Seg-
ResNet [12] and AttentionUnet [13] are also considered to
further justify the generalization capability of RAS.

2.3. Information Gain Loss

Since we treat the calcification level prediction as a task of
five-class quantization estimation, the loss from depth esti-
mation could be another alternative for this very task. To
justify this hypothesis, we also use the information gain loss
(IGL) [14] that is widely used in depth estimation to achieve
better results. The rational of IGL lies in that predictions close
to ground-truth labels can also help in updating network pa-
rameters. IGL is defined as:

LIG = − 1

V

V−1∑
i=0

N−1∑
D=0

M(D∗
i , D)log(P (D|zi)), (2)

where V is the total amount of the pixels of CT images, N
is the number of calcification levels and D is the calcification
level. D∗

i is the ground-truth labels of each pixel. zi is the out-
put of the last convolutional layer in the network. The metric
P (D|zi) refers to the probability of each pixel labeled with
D. The M metric is defined as: M(D∗

i , D) = e−α(D∗
i −D)2,

where α is a constant parameter. By using IGL, it encourages
the predicted calcification levels that are closer to ground-
truths have higher contributions in updating network parame-
ters, which provides a better way to utilize the quantized cal-
cification labels. Finally, we use CE loss, Dice loss and IG
loss to optimize the segmentation model.
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Table 1. Comparison of our method with the baseline for
sharp reconstruction kernels on the test set.
Methods Dice Prec. Sens. CACS Acc CACSE CACSRE

baseline 0.2945 0.3986 0.5793 0.6421 119.8728 9.7569
Ours 0.8764 0.8993 0.9044 0.9578 13.1270 0.1208

3. EXPERIMENTAL SETTING

3.1. Data Preparation

The image data used in our experiments are retrospectively
collected from multiple medical facilities, taken by CT scan-
ners made by various manufacturers. To evaluate the perfor-
mance of the robust Agatston score (RAS) against the change
of reconstruction kernels, we carefully build up one dataset
that considers as various conditions as possible. These factors
include the age, sex and calcification level (i.e., CACS level)
for an individual. For all the CT scans, we only use the stud-
ies having multiple thin-slice series (with slice thicknesses no
greater than 3mm) reconstructed using soft and sharp kernels
respectively. We manually label the regions of coronary cal-
cification on soft series, and reuse them for the sharp ones.
The total dataset consists of 951 CT scans and we hold about
10% to make a test set, which is not accessible during model
training and for final accuracy assessment. Similarly, we hold
another 10% to make a validation set for online accuracy eval-
uation and best model selection. In addition, both patient’s
age, sex and calcification level are considered during the split
of train, test and validation to make a balanced dataset.

As for the ground-truth of the calcification level predic-
tion task, we firstly selected a calcification sub-region inside
the manually labeled coronary calcification masks according
to the HU value of CT image pixels (CTi) and the preset
threshold, and then quantify them into five pixel-wise calcifi-
cation levels, including level 0 (CTi ≤ 130 HU ), level 1 (130
HU ≤ CTi < 200 HU ), level 2 (200 HU ≤ CTi < 300
HU ), level 3 (300 HU ≤ CTi < 400 HU ) and level 4 (CTi

≥ 400 HU ). Afterwards, we treat the calcification level per
pixel in soft series as the ground-truth, which is stable and
has a high-resolution. In contrast, those in sharp series are
noisy, which are not preferred when computing CACS. To
bridging this gap, we feed a network with sharp series, and let
it learn to predict the calcification level masks obtained from
soft series to make the calcification level prediction more ro-
bust against various CT image acquisition protocols.

Besides, CT kernel together with slice spacing, pixel
spacing and CT manufacturer witness a great variety in this
study. CT kernels include sharp kernels (e.g., B SHARP C,
B VSHARP C, FC51, FC52, LUNG) and soft kernels (e.g.,
B SOFT B, FC02, FC03, FC18, STANDARD), while CT
manufacturers include GE, SIEMENS, TOSHIBA and UIH.
Slice spacing ranges from 0.7 mm to 3 mm while pixel spac-
ing ranges from 0.46 mm to 0.94 mm.

Table 2. Comparison of our method with the baseline for each
CACS level (L0, L1, L2, L3 and L4) on the test set.

Methods CACSE CACSRE
L0 L1 L2 L3 L4 L0 L1 L2 L3 L4

baseline 3.87 19.04 59.14 115.98 401.30 - 7.45 1.59 0.61 0.33
Ours 0.0 1.14 4.51 12.87 47.09 - 0.38 0.11 0.07 0.03

3.2. Evaluation Metrics

The adopted evaluation metrics include both segmentation-
based and Agatston score-based metrics. Segmentation-based
metrics include the widely used Dice coefficient (Dice),
Precision (Prec.) and Sensitivity (Sens.). Agatston score-
based metrics include: a) the accuracy of the CACS level
(CACS Acc), which is the proportion of correctly predicted
CACS levels in the whole dataset, b) the error of CACS
(CACSE), which is the absolute error between the pre-
dicted CACS and the ground-truth one, c) the relative er-
ror of CACS (CACSRE), which is the CACS error divided
by the ground-truth CACS. As the main evaluation system
of CACS, the Agatston score [15] per slice is computed
as: Agatston score = f × p × s, where f is the density
factor (calcification level), p is the pixel number and s is the
area per pixel, given that slice thickness is 3mm. In other
case, we can re-weight it by a factor of (slice thickness) / 3.

3.3. Implementation Details

In this work, all experiments are implemented using PyTorch
1.7 on two TITAN Xp GPUs. We build up the whole pipeline
on top of the fastai [16] toolkit. A fixed random seed is set to
mantain the evaluation results reproducible. We use three seg-
mentation networks including U-Net [6], SegResNet [12] and
AttentionUnet [13] to verify the robustness and generaliza-
tion of our method, which are implemented from MONAI1.
AdamW is chosen as the optimizer with an initial learning
rate of 1e-3. For data augmentation, random rotation and ran-
dom scaling are used in the training phase. We discard color-
based data augmentation, which is not suitable for this task
and hurts calcification level prediction accuracy. More exper-
imental setups can be found in the public code repository.

4. EXPERIMENTAL RESULTS
4.1. Quantitative Results

We evaluate the proposed deep segmentation model-based
method and the classic HU threshold-based Agatston method
(baseline) for the change of reconstruction kernels on the test
set. We show the results of the mean values of all CACS
levels for each metric in Table 1 and CACSE, CACSRE for
each CACS level in Table 2, as well as confusion matrices
in Fig. 4, which all demonstrate significant and consistent
improvements compared to the baseline. From Table 1, due
to a large amount of noise in the sharp kernel, the prediction

1https://monai.io/

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on September 17,2023 at 18:33:54 UTC from IEEE Xplore.  Restrictions apply. 



Level 0
Level 1
Level 2
Level 3
Level 4

Case 1

Case 2

(a) soft kernel (GT) (b) sharp kernel (Baseline) (c) sharp kernel (Ours) 

Fig. 3. The Visual comparison of the CT images and masks
among different kernels for baseline and our method.

accuracy of the calcification level of baseline is unacceptable,
and the Dice metric is only 0.2945. However, our method can
accurately predict the calcification level, with Dice reaching
0.8764. Meanwhile, our CACS level accuracy is as high as
0.9578, which is 0.3157 higher than baseline. For each CACS
level error in Table 2, our method achieves extremely small
errors, while the baseline errors are usually huge. Similarly,
in the confusion matrices in Fig. 4, our method has high pre-
diction accuracy for each level for 95 cases in the test set.
These results illustrate the robustness of our method in the
face of noisy reconstruction kernels.

4.2. Qualitative Results

As shown in Fig. 3, (a) and (b) are images and masks among
the change of different kernels using HU threshold-based
method. (b) and (c) are images and masks for HU threshold-
based and our method under the same sharp kernel. The
image of the soft kernel (a) is smooth but the image of the
sharp kernel (b) is rough, and the masks (GT and baseline)
obtained from their images vary significantly. We can clearly
see that the calcification levels obtained by sharp kernel using
HU threshold-based method have serious noise, which greatly
impairs the prediction of CACS. However, the mask obtained
by our proposed model can better predict the calcification
level per pixel. This fully demonstrates that our model can
well resist the change of the reconstruction kernel, greatly
improving the robustness of the Agatston score.

Table 3. Comparison with the classic Agatston score (base-
line) and ablation study on our method on the test set.

Method Dice Prec. Sens.

baseline 0.2945 0.3986 0.5793
U-Net 0.8659 0.8881 0.8988
U-Net + IGL + LDA 0.8444 0.8688 0.8848
U-Net + IGL (Ours) 0.8764 0.8993 0.9044

4.3. Ablation Study

To evaluate the impact of each component in our method,
we show the result of ablation study in Table 3. Our method
with all the considered configurations outperforms the base-
line significantly, showing the effectiveness of our method
against the change of reconstruction kernels. First, the U-Net
segmentation model can accurately predict the calcification

(a) Baseline
Predicted label

Tr
ue

 la
be

l

Predicted label

Tr
ue

 la
be

l

(b) Ours

Fig. 4. Confusion matrices of the CACS level prediction for
sharp reconstruction kernels.

level of each pixel compared to the baseline despite under
the sharp kernel. Second, with information gain loss (IGL),
our method performs even better. This shows the impor-
tance of encouraging the calcification levels that are closer
to their ground-truths. Finally, although the lighting data-
augmentation (LDA) also improves the performance, it has a
significant performance drop compared to U-Net + IGL. This
illustrates that color-based data augmentation is ineffective or
even harmful for such image brightness-related tasks in the
training of deep models.

Furthermore, to demonstrate that our method also gener-
alizes well under different segmentation models, we addition-
ally evaluate two widely used segmentation networks, Seg-
ResNet [12] and AttentionUnet [13] on the test set in Table 4.
We can see that our method, regardless of the segmentation
network used, can significantly improve the performance of
the baseline. In addition, different segmentation networks
have little effect on our method, which shows that our pro-
posed method has good generalization.

Table 4. Comparison with different segmentation models.
Method Dice Prec. Sens.

baseline 0.2945 0.3986 0.5793
Ours (U-Net [6]) 0.8764 0.8993 0.9044
Ours (SegResNet [12]) 0.8806 0.9044 0.9057
Ours (AttentionUnet [13]) 0.8798 0.8956 0.9144

5. CONCLUSIONS

We have proposed the robust Agatston score (RAS), and
shown its stability against the change of reconstruction ker-
nels. We have built up the whole pipeline on top of U-
Net, wherein we have studied the respective impact of data-
augmentation and training loss. In practice, this technique
can enhance the compatibility of CACS, which could prob-
ably increase its reliability and would possibly be in clinical
applications and researches such as multi-center studies that
involve various CT image acquisition protocols.

Discussion: The method proposed in this paper can only
model the CT of the same shot, and cannot predict the cal-
cification score for CT of different shots and changes in the
heart position. In addition, we only consider CT series with
different kernels, however, the slice spacing also impacts the
robustness of CACS values. Therefore, a future study should
consider the effect of slice spacing variances.
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