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Abstract— Existing self-supervised medical image seg-
mentation usually encounters the domain shift problem
(i.e., the input distribution of pre-training is different from
that of fine-tuning) and/or the multimodality problem (i.e.,
it is based on single-modal data only and cannot utilize the
fruitful multimodal information of medical images). To solve
these problems, in this work, we propose multimodal con-
trastive domain sharing (Multi-ConDoS) generative adver-
sarial networks to achieve effective multimodal contrastive
self-supervised medical image segmentation. Compared
to the existing self-supervised approaches, Multi-ConDoS
has the following three advantages: (i) it utilizes multi-
modal medical images to learn more comprehensive object
features via multimodal contrastive learning; (ii) domain
translation is achieved by integrating the cyclic learning
strategy of CycleGAN and the cross-domain translation
loss of Pix2Pix; (iii) novel domain sharing layers are intro-
duced to learn not only domain-specific but also domain-
sharing information from the multimodal medical images.
Extensive experiments on two publicly multimodal medi-
cal image segmentation datasets show that, with only 5%
(resp., 10%) of labeled data, Multi-ConDoS not only greatly
outperforms the state-of-the-art self-supervised and semi-
supervised medical image segmentation baselines with
the same ratio of labeled data, but also achieves similar
(sometimes even better) performances as fully supervised
segmentation methods with 50% (resp., 100%) of labeled
data, which thus proves that our work can achieve superior
segmentation performances with very low labeling work-
load. Furthermore, ablation studies prove that the above
three improvements are all effective and essential for Multi-
ConDoS to achieve this very superior performance.

Index Terms— Self-Supervised Learning, Multi-Modal
Medical Image Segmentation, Contrastive Learning, Do-
main Translation, Domain Sharing.
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I. INTRODUCTION

SUPERVISED deep learning has achieved some great
successes in medical image segmentation tasks [1]–[4],

where a large amount of labeled data are presented. However,
although a huge number of medical images are generated in
daily clinical practice, annotating them is a highly professional
task that can only be done by radiologists with extensive
clinical experience. Due to the limited number, time, and anno-
tating efficiency of professional radiologists, obtaining a large
medical image dataset with accurate annotations is usually
very difficult, which thus limits the use of supervised-learning-
based segmentation approaches in daily clinical practice.

Consequently, recent research has witnessed several efforts
in self-supervised medical image segmentation [5]–[9], where
self-supervised learning is first conducted on a large amount
of unlabeled data to learn the general features of medical
images, then, by using the resulting model as the pre-trained
model, fully supervised learning is further conducted on a
small number of labeled data for fine-tuning. Therefore, the
performance of self-supervised medical image segmentation
relies heavily on the quality of self-supervised pre-training.

The recovery paradigm is a state-of-the-art self-supervised
learning approach, where some strategies, e.g., rotation [10]
and jigsaw puzzle [11], [12] are first applied to modify unla-
beled images; then by using the resulting modified images as
input and the original images as ground-truth, self-supervised
learning is conducted to learn general image features via
image recovery. However, existing recovery-paradigm-based
self-supervised learning methods have the following two short-
comings. (i) Domain shift problem: Due to the use of artificial
strategy modified images as the inputs of the pre-training
network, in recovery paradigm-based methods, the input dis-
tributions of the upstream pre-training networks are usually
different from the input distributions of the downstream seg-
mentation networks, where original images instead of modified
images are used as inputs; consequently, the general features
learned in the pre-trained models may not be applicable in the
segmentation networks, which inevitably makes the fine-tuning
more difficult and thus limits the segmentation performances.
(ii) Multimodality problem: existing recovery-paradigm-based
methods are mostly based on single-modal data and lack
the capability to exploit multimodal information of medical
images. Compared with single images, multimodality images
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are helpful to extract features from different views and bring
complementary information, making the network have a better
ability of segmentation.

Contrastive learning [13]–[20] is another self-supervised
pre-training approach, which uses a contrastive strategy to
minimize the distance of pairs of similar images (that are
usually obtained from the same original image using different
data augmentation strategies) in the latent space while maxi-
mizing the distance of pairs of dissimilar ones. By applying
the same set of data augmentation strategies in both upstream
and downstream tasks, contrastive learning-based methods can
have similar input distributions in both the upstream pre-
training and the downstream segmentation networks; this thus
overcomes the domain shift problem and makes their pre-
trained models more applicable in the downstream segmenta-
tion networks than recovery paradigm-based methods. Conse-
quently, contrastive learning based methods have demonstrated
good performances in medical image segmentation tasks [9],
[14]. However, the multimodality problem still exists.

In recent years, Multi-alignment [21] and ContIG [20]
are proposed to utilize the multimodal information of med-
ical images by multimodal contrastive semantic alignment.
Specifically, Multi-alignment [21] first encodes images as
spatial feature maps and then estimates the local similarities
between images of different modalities to achieve multi-modal
alignment by multimodal contrastive learning; consequently,
the annotations of one modality are transferred to another
modality as pseudo-labels to achieve unpaired multi-modal
medical image segmentation using solely one set of annota-
tions. ConIG [20] utilizes contrastive learning to align fundus
images with multiple genetic modalities and then discover
the cross-modal semantic relationships between images and
genetic data.

Nevertheless, our studies show that solely using multi-
modal contrastive learning still cannot fully utilize the fruitful
multimodal information of medical images to achieve satis-
factory performances. Therefore, in this paper, we propose
a new multimodal contrastive self-supervised medical image
segmentation method, called Multimodal Contrastive Domain
Sharing (Multi-ConDoS) generative adversarial networks,
where pairwise multimodal medical images are adopted for
self-supervised pre-training. Since these pairwise multimodal
medical images are different imaging results of the same
objects (e.g., lesions and/or organs inside human bodies),
they should contain the semantic information of different
aspects of the same object, which thus can be used together
after proper registrations, to complement each other to learn
more comprehensive features of the corresponding objects
via domain translation. Generally, Multi-ConDoS are learned
by a two-stage learning procedure. First, the novel domain
sharing generative adversarial networks (DSGANs) are used
to conduct multimodal contrastive self-supervised pre-training
using a large number of unlabeled multimodal medical images.
Then, the resulting modules are used to construct U-Net
models for the downstream segmentation tasks, which are fine-
tuned in a fully supervised way using solely a small amount
of labeled medical images.

Specifically, different from Multi-alignment [21] and Con-

tIG [20] that solely rely on multi-modal contrastive learning,
the proposed Multi-ConDoS integrates domain translation
and domain sharing techniques with multimodal contrastive
learning to utilize the important multimodal information more
comprehensively. First of all, DSGANs aim to utilize domain
translation to learn the complementary mutual information of
multimodal medical images for self-supervised pre-training.
As we know, CycleGAN [22] and its variants [23] are widely-
adopted domain translation approaches, which, however, are
usually used for unpaired. Therefore, we propose to construct
DSGAN by combining CycleGAN with the classic paired
image translation model, Pix2Pix [24], where the GAN loss
and the L1-based cross domain translation loss work together
to better learn pixel-wise detailed information and features
from paired images and reduce blurring.

Furthermore, in the process of domain translation, the
networks have to learn not only domain-specific information
representation, but also domain-sharing information represen-
tation; this is because, besides domain-specific features, the
pairwise multimodal medical images also share a lot of general
features (i.e., common features exist in both modalities),
which are important learning objectives for self-supervised
pre-training. However, the encoders in CycleGANs are mainly
designed to learn the specific features of different domains;
therefore, to effectively learn both specific and general fea-
tures, a domain sharing technique is proposed in DSGAN
by upgrading the traditional framework of CycleGAN with
additional domain sharing layers. Finally, to further enhance
DSGANs’ feature learning capability, a multimodal contrastive
loss is also used to maximize the similarities between features
generated by multimodal images within the same pairs while
minimizing the similarities of those within different pairs.

The contributions of this work can be summarized as
follows. (i) We identify the shortcomings of the existing self-
supervised medical image segmentation approaches, and pro-
pose a multimodal contrastive self-supervised medical image
segmentation method, Multi-ConDoS, which utilizes a novel
domain-sharing generative adversarial networks (DSGANs) to
learn more comprehensive object features for self-supervised
pre-training from multimodal medical images. (ii) There exist
three advancements in DSGAN: First, DSGAN is a fusion
of CycleGAN and the classic paired image translation model,
Pix2Pix, so it can utilize both the cyclic learning strategy of
CycleGAN and the cross domain translation loss of Pix2Pix
to achieve better domain translation capability. Second, novel
domain sharing layers are introduced to help DSGAN learn
not only domain-specific but also domain-sharing information.
Third, the multimodal contrastive loss is also used to better
learn multimodal features. (iii) Extensive experiments are
conducted on two public multimodal medical image seg-
mentation datasets. The experimental results show that, with
only 5% (resp., 10%) of labeled data, Multi-ConDoS not
only greatly outperforms the state-of-the-art self-supervised
and semi-supervised medical image segmentation baselines
with the same ratio of labeled data, but also achieves similar
(sometimes even better) performances as fully supervised
segmentation methods with 50% (resp., 100%) of labeled
data, which thus proves that our work can achieve superior
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segmentation performances with very low labeling workload.
In addition, ablation studies prove that the three improvements
(i.e., the fusion of CycleGAN and Pix2Pix for domain transla-
tion, domain-sharing layers, and multimodal contrastive loss)
are all effective and essential for Multi-ConDoS to achieve the
very superior performance.

II. RELATED WORK

A. Self-Supervised Learning (SSL)

SSL uses many unlabeled data to learn the general structural
and anatomical representation. Then, the learned representa-
tion is applied to downstream tasks with a small amount of
data to fine-tune [10]–[12], [25], [26]. For example, Rota-
tion [10] encourages the model to learn visual representations
by simply predicting the angle by which the input image is
rotated. Jigsaw [11] derives a jigsaw puzzle grid from an input
image and solves it to learn both a feature mapping of object
parts and their correct spatial arrangement. Multimodality jig-
saw (M-Jigsaw) [12], where puzzle pieces come from different
modality images, is proposed to facilitate rich representation
learning by confusing images at the data level. Different
from the above recovery paradigm-based SSL methods, Multi-
ConDoS keeps the inputs of the upstream and downstream
network the same and avoids the domain shift problem. Then,
we choose the above three recovery paradigm-based SSL
methods (i.e., Rotation, Jigsaw, and M-Jigsaw), which have
been successfully applied in medical image analysis, as our
self-supervised learning baselines.

B. Contrastive Learning

Contrastive learning [13]–[17] enforces positive samples
closer and negative samples further away in the latent space.
Such methods are usually achieved by applying a contrastive
loss [27]. Exemplar [28] trains with a triplet loss to achieve
this goal. So, Exemplar can be considered as a simplified
version of contrastive SSL. Aiming at different ways of col-
lecting negative samples for positive samples during training,
different architectures are developed from contrastive learning.
SimCLR [14] trains an encoder to generate pairwise positive
representations for different views of an input image, maximiz-
ing the similarity of the positive representations of the input
image while minimizing the similarity to the representations
of views from other images in the same batch. Different from
SimCLR, BYOL [18] does not rely on negative samples, it
replaces the contrastive loss with MSE loss and trains the
online network to predict the target network representation of
the same image under a different augmented view, achieving
superior performance. Furthermore, SwAV [19] is proposed
to utilize a clustering algorithm to cluster similar features
together, i.e. the goal is not just to make a pair of samples close
to each other, but also to ensure all features that are similar to
each other are clustered together. Recently, contrastive learning
has been successfully applied in medical image analysis [9],
[29], [30] and other related fields [20]. For example, CPC [30],
[31], which utilizes the idea of contrastive learning in the
latent space, predicts the embedding of the next or adjacent

sample. G-L [9] proposes to combine a local contrastive
strategy (i.e., using 3D inter-layer location information for
contrastive learning) with a global contrastive strategy to learn
beneficial information representations. However, these designs
are based on single-modal medical image data without consid-
ering the multimodality of medical images. Therefore, Multi-
alignment [21] is then proposed to learn segmentation models
for unpaired multi-modal medical images with solely a single
annotation set, where a contrastive learning framework is pro-
posed for multimodal image matching, and the segmentation
results of one modality are transferred to the other modalities
as pseudo-labels. Similarly, ContIG [20] also proposes to use
multimodal contrastive learning to align the fundus image and
several other genetic modalities in the feature space. Different
from the existing methods, Multi-ConDoS is not only based on
multimodal contrastive learning but also utilizes domain trans-
lation and domain sharing techniques to learn complementary
mutual information of multimodal data, so it can utilize
the important multimodal information more comprehensively.
Finally, we choose the above contrastive learning SSL methods
(i.e., Exemplar, SimCLR, BYOL, SwAV, CPC, G-L, ContIG)
as the self-supervised contrastive learning baselines. Multi-
alignment is not used as the baseline, because the inputs in our
task are paired images with the same annotations so the very
key pseudo-labels generation functionality of Multi-alignment
is not applicable.

C. Semi-Supervised Learning

Semi-supervised learning is another paradigm to solve the
problem of lacking of sufficient segmentation labels in medical
image segmentation tasks [32]. Instead of learning in a two-
stage way as self-supervised learning, semi-supervised models
are learned using both a large amount of unlabeled data and
a small amount of labeled data learning in a one-stage way.
Semi-supervised learning has been successfully applied in the
field of medical image segmentation [33]–[35]. For example,
MT [33] proposes to use the averaging model weights method
to construct a teacher model, and encourages the teacher
model and the student model to have consistent predictions
on the input data under different disturbances to achieve semi-
supervised learning. SASS [35] proposes a shape-aware semi-
supervised segmentation method, which implements geometric
shape constraints through a signed distance map of object
surfaces to improve the use of unlabeled data. DTML [34]
proposes a dual-task mutual learning semi-supervised method
to explore the useful knowledge of unlabeled data by gen-
erating target segmentation maps and regressing the signed
distance maps. However, these methods still are based on
the single-modal state, without considering multimodality.
Finally, since self-supervised learning and semi-supervised
learning are two different types of approaches for the same
problem, we choose the above three methods (i.e., MT, SASS,
and DTML) as the semi-supervised learning baselines in our
experiments to comprehensively demonstrate the superiority of
the proposed Multi-ConDoS in solving the lacking of sufficient
segmentation labels more.
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III. PROBLEM SETTING

Fully-Supervised Medical Image Segmentation. Given a
dataset D containing a large number (n) of medical image
samples (denoted x) that are all associated with pixel-level
segmentation masks (denoted label), i.e., D = {xi, labeli}ni=1,
fully-supervised medical image segmentation aims to learn a
segmentation model that is capable of achieving accurate med-
ical image segmentation performances using a large amount
of well-labeled data.

Self-Supervised Medical Image Segmentation. Different
from the fully-supervised settings, self-supervised medical
image segmentation aims to achieve similar or even better seg-
mentation performances than fully supervised solutions using
only a small ratio of annotations, which will greatly boost the
application of intelligent medical image segmentation systems
in clinical practices because obtaining pixel-level segmenta-
tion masks for medical images not only requires a lot of
professional knowledge but also is very time-consuming. The
specific learning procedure of self-supervised medical image
segmentation is as follows. Given a dataset, Ds with a large
number (n) of medical image samples but only a small ratio (r)
of them are associated with pixel-level segmentation masks,
i.e., Ds = {{xi}ni=1, {labelj}mj=1} and r = (m/n) × 100%,
self-supervised medical image segmentation first solely utilizes
a large number of medical images (without using any label) to
learn a pre-trained model (Netpre) that contains general vision
features of the medical images by self-supervised learning
methods. Then a medical image segmentation model NetSeg

can be further obtained by fine-tuning Netpre using the small
number of medical images {xj}mj=1 that contain pixel-level
segmentation masks {labelj}mj=1.

Multimodal Self-Supervised Medical Image Segmenta-
tion. Since multimodal medical images contain fruitful and
complementary information, in this work, we further apply
multimodal medical images in the self-supervised medical
image segmentation tasks with the aim of achieving accurate
multimodal self-supervised medical image segmentation using
a small ratio of annotations. Given a dataset Dm with a
large number (n) of pre-registered and pre-aligned multimodal
medical image pairs (denoted x = {xa, xb}) and a small
ratio (r) of pixel-level segmentation masks, i.e., Dm =
{{xa

i , x
b
i}ni=1, {labelj}mj=1} and r = (m/n) × 100%, mul-

timodal self-supervised medical image segmentation aims to
first solely utilize the paired medical image samples {xa

i , x
b
i}

(without using any label) to learn multiple pre-trained mod-
els Netapre and Netbpre (each of which corresponds to a
modality and contains general vision features of the corre-
sponding modality) by multimodal self-supervised learning
methods. Then, the small portion of annotated multimodal
medical images {xa

j , x
b
j}mj=1 are further utilized together with

their segmentation masks {labelj}mj=1 to fine-tune the cor-
responding pre-train models, i.e., annotated medical images
{xa

j , labelj}mj=1 (resp., {xb
j , labelj}mj=1) are used to fine-tune

Netapre (resp., Netbpre); finally, multiple medical image seg-
mentation models (i.e., Netaseg and Netbseg) are obtained, each
of which is used for the specific segmentation task of the
corresponding medical image modality.

IV. METHODOLOGY

Fig. 1 illustrates the overall structure of the proposed
multimodal contrastive domain sharing (Multi-ConDoS) self-
supervised medical image segmentation approach. Multi-
ConDoS mainly consists of two processing steps. First,
domain-sharing generative adversarial networks (DSGANs)
are used to conduct multimodal contrastive self-supervised
pre-training using a large number of unlabeled multimodal
medical images. The resulting modules are then used to
construct the classic U-Net models, which are trained in a fully
supervised way with a small amount of labeled medical images
to achieve the downstream segmentation tasks. Generally,
DSGAN is a fusion of CycleGAN and the classic paired image
translation model, Pix2Pix [24], with additional improvements
(i.e., multimodal contrastive learning and shared layers). So,
we can see DSGAN as either a paired translation extension
of CycleGAN or a cyclic extension of Pix2Pix. The reasons
for integrating CycleGAN with Pix2Pix for domain translation
instead of solely using CycleGAN or Pix2Pix are as follows.
First, comparing to the classic paired image translation mod-
els (e.g., Pix2Pix), CycleGAN’s cyclic training strategy is
very beneficial for fully and comprehensively learning modal
feature information: Pix2Pix only learns the unidirectional
mapping relationship of pairwise multimodal images, while
CycleGAN’s cyclic training strategy can learn the one-to-
one bidirectional mapping relationship of pairwise multimodal
images, which helps the generator network learn a more
accurate latent representation space. Second, CycleGAN can
simultaneously learn the feature information of two domains
and conduct cross domain generation in two directions, which
is the structural basis for setting the shared layer (SL) and
introducing contrastive loss. Third, by introducing the cross
domain translation loss LT from Pix2Pix into DSGAN, similar
to the paired image translation models (e.g., pix2pix), DSGAN
can also learn the pixel-wise detailed information and features
from paired images like. Consequently, combining CycleGAN
with Pix2Pix makes DSGAN has the advantages of both
models.

Specifically, in the pre-training step, DSGANs utilize a
domain-sharing generator (DSG) to first take the original
unlabeled medical images X (resp., Y ) as inputs to generate
images in the other domain, so we call this image generation
process image translation and the resulting images Y ′ (resp.,
X ′) translation images. Then, similarly to CycleGANs [22],
Y ′ and X ′ are further used as inputs of DSG to generate
images X ′′ and Y ′′, respectively. Since X ′′ (resp., Y ′′) is gen-
erated from Y ′ (resp., X ′), which is obtained from X (resp.,
Y ), X ′′ (resp., Y ′′) can be seen as the reconstructive images
of X (resp., Y ). As shown in Fig. 1, the structure of DSG is
similar to the generator of CycleGANs but uses shared layers
(SL) to better capture the general features that commonly exist
in both domains. Furthermore, two discriminators DisX and
DisY are used to discriminate between the translated image
X ′ (resp., Y ′) and the original input image X (resp., Y ) to
encourage the domain-sharing generator (DSG) to generate
images that are more similar to the realistic original input
images. Finally, the resulting modules of DSG are used in the
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Fully Supervised Downstream Segmentation Tasks
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Fig. 1. Overview of multimodal contrastive domain-sharing (Multi-ConDoS) self-supervised medical image segmentation, where
DSGANs are used to learn a bidirectional mapping of multimodal data using shared layers (SL) and contrastive losses (LC ), and
the resulting modules are then used as pre-trained modules in the downstream segmentation task.

fully supervised downstream segmentation tasks as pre-trained
modules.

A. Domain-Sharing Generative Adversarial Networks
Generative adversarial networks (GANs) [22], [36]–[40]

have an excellent performance in image-to-image transla-
tion. CycleGANs [22] use two separate generators to learn
the bidirectional mapping of two domains by performing
two cross-domain translations. Inspired by this, we pro-
pose Domain Sharing Generative Adversarial Networks (DS-
GANs), which learn a representation through bidirectional
cross-domain learning and multimodal contrastive learning.
Specifically, cross-domain learning can learn modality-specific
knowledge, while the shared-layer (SL) and multimodal con-
trastive learning are designed to learn general knowledge
of both modalities. As illustrated in Fig. 1, our framework
consists of a generation module DSG: {Ga (Ea, SL,Da):
X ⇒ Y , Gb (Eb, SL,Db): Y ⇒ X} and two domain-specific
discriminators (i.e., DisX and DisY ).

The discriminators DisX and DisY aim to discriminate
between real and translated images in the domains X and Y ,
thus facilitating the generator to produce more realistic images.
The generator DSG aims to generate images that are as close
to reality as possible, which contains two encoders {Ea, Eb},
a shared layers module (SL), and two decoders {Da, Db}.
The two encoders (i.e., Ea and Eb) extract features of images
from different modalities, and send the features of the input
images into SL, so that the contents of the two domains are
mapped to the same latent space. The contents encoded by SL
for the two domains are then fed into their respective decoders
(i.e., Da and Db).

In the process of cross-domain generation, Ea and Eb are
domain-specific encoders, and they tend to learn domain-

specific information. In fact, the extracted features actually
contain domain-specific and domain-sharing information. To
better learn the domain-sharing features and realize the mutual
complement of multimodal information, we develop shared
layers (SL) and multimodal contrastive loss. SL can receive the
representations of two domains and map the features extracted
from Ea and Eb to the same latent space. The intuitions
of sharing layers are as follows: To achieve good domain
translation, the networks have to learn not only domain-
specific information, but also domain-sharing information (i.e.,
common features exist in both modalities). Consequently,
with the design of sharing some layers, the proposed Multi-
ConDoS will learn both domain-specific information (in Ea

and Eb) and domain-sharing information (in SL), i.e., al-
though the design of sharing layers may result in less domain-
specific features, it can help gain much more domain-sharing
features. We believe this is not harmful but beneficial for
domain translation, because, with the help of domain-sharing
features, the network can comprehensively model not only
the differences but also the similarities between different
modalities. This is believed to be better than modeling solely
the domain-specific features, as the excessive domain-specific
information may make the model overly focus on the domain-
specific characteristics and may lose the generalization to
some extent, i.e., resulting in a kind of “domain-overfitting”
problem. Therefore, we believe sacrificing an acceptable extent
domain-specific information in exchange for better modeling
of domain-sharing information in the proposed Multi-ConDoS
will avoid the potential “domain-overfitting” problem and
enhance the model’s generalization, thus its domain translation
performances will be increased.
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B. Multimodal Contrastive Loss
However, sharing the same latent space does not mean

that SL encodes the consistency information of the paired
image features of the two domains. Therefore, the contrastive
loss is used to minimize (respectively, maximize) the distance
between paired (respectively, unpaired) images to highlight
the important domain-sharing information. Our multimodal
contrastive loss is based on the contrastive loss [14] that is
shown to achieve a state-of-the-art performance in many cases.
We begin with a general form of the contrastive loss as given
in Equation (1), and then introduce our multimodal contrastive
loss.

Li,j = − log
esim(x̂i,ŷj)/t

esim(x̂i,ŷj)/t +
∑

x̃∈Λ− esim(x̂i,x̃)/t
,

x̂i = g (f (xi)) , ŷj = g
(
f
(
yj
))

,

(1)

where, for a mini-batch {zi}Ni=1, {xi, yi}Ni=1 are different
views of the same image, as a similar pair, and Λ− is a set
that is not similar to xi, as dissimilar pairs. sim is defined
as cosine similarity, g and f are non-linear mappings, and
t denotes the temperature parameter. Minimizing the loss l
increases the similarity between similar pairs, while increasing
the dissimilarity between dissimilar pairs. The multimodal
contrastive loss is defined as follows:
l(xi, yi; θ; t) =

− log
esim(Fxi (θ),Fyi (θ))/t

e
sim

(
Fxi(θ)

,Fyi (θ)
)
/t
+
∑

Fz∈Γ−e
sim

(
Fxi(θ)

,Fz(θ)
)
/t
, (2)

LC(G; θ; t) =
1

|Γ+|
∑

∀(xi,yi)∈Γ+

[l (xi, yi; θ; t)+l (yi, xi; θ; t)]+

1

|Γ′+|
∑

∀(x′i,y
′
i)∈Γ′+

[
l
(
x′i, y

′
i; θ; t

)
+l

(
y′i, x

′
i; θ; t

)]
,

(3)

where Γ+ and Γ′+ are sets of all similar pairs. We form a batch
by randomly sampling N pairs of images {xi, yi}Ni=1. In our
model, we use the encoders {Ea, Eb} and SL to extract the
feature representations {Fxi, Fyi} and {Fxi′, Fyi′} of pairs
of different modality views {xi, yi} and {xi′, yi′}, respec-
tively. Multimodal medical images are characterized by the use
of different ways to capture the contents of the same tissue
area, so that different modality views corresponding to the
same area can be considered similar. We used the feature repre-
sentations of different modality views extracted for contrastive
loss calculation. Here, {Fxi, Fyi}Ni=1 and {Fxi′, Fyi′}Ni=1

are similar pairs, while {Fxi, Fyj}i̸=j and {Fxi′, Fyj ′}i ̸=j

are dissimilar pairs, where Fxi ∈FX , Fyi ∈FY , Fxi′ ∈F ′
X ,

and Fyi′ ∈F ′
Y . The optimization goal of contrastive loss is

to make pairs of modal view features as close as possible in
the latent space, while unpaired modal view features as far as
possible.

Since the multimodal contrastive loss is based on cosine
similarity, which is usually applied to one-dimensional feature
vectors, so, in Multi-ConDoS, the resulting two-dimensional
feature maps are flattened to one-dimensional feature vectors
from the dimension dim = 1 before they are used to compute
the contrastive loss. Actually, the operations of converting
two-dimensional feature maps into one-dimensional feature
vectors to make them applicable for the cosine similarity based

contrastive loss are widely observed in the existing contrastive
learning based image processing works, e.g., SimCLR [14],
ContIG [20], and Multi-alignment [21], where non-linear pro-
jection heads are usually adopted for the conversion. However,
we note that using non-linear projection heads may result
in the loss of detailed information, which is harmful to the
pixel-wise segmentation tasks. Therefore, flatten operations are
directly used in Multi-ConDoS for the dimension conversion
to avoid information loss.

C. Other Losses
Besides the multimodal contrastive loss, several other losses

are also used in DSGANs for bidirectional cross-domain
learning. Since the goal of the discriminators, DisX and
DisY , is to tell the differences between real and translation
images, while the generator, DSG, aims to generate realistic
images, an adversarial GAN loss LGAN is defined as:
LGAN (G,Disx, Disy) =

Ey∼pdata(y)
[logDisY (y)]+Ex∼pdata(x)

[log (1−DisY (Ga(x))]]+

Ex∼pdata(x)
[logDisX(x)]+Ey∼pdata(y)

[log (1−DisX(Gb(y))]] .
(4)

In addition, integrating the GAN loss with L1 loss is reported
to be beneficial for reducing blurring [24] and helping the
model learn pixel-wise detailed information and features from
paired images; therefore, similar to Pix2Pix [24], a L1-based
translation loss is further used to minimize differences be-
tween the input and translation images. Formally,

LT(G) = Ex∼pdata(x)
[∥Ga(x)− y∥1]

+ Ey∼pdata (y)
[∥Gb(y)− x∥1] .

(5)

Finally, a reconstructive loss is applied to minimize the
distance between the reconstructed image X ′′ (resp., Y ′′) and
the input image X (resp., Y ). Formally,

LR(G) = Ex∼pdata (x)
[∥Gb(Ga(x))− x∥1]

+ Ey∼pdata (y)
[∥Ga(Gb(y))− y∥1] .

(6)

Consequently, the complete learning loss of DSGANs is:

L (G,Disx, Disy) = LGAN (G,Disx, Disy, X, Y )+

γLT(G)+βLR(G)+λLC(G, θ, t),
(7)

where γ, β, and λ are the coefficients of LT(G), LR(G), and
LC(G, θ, t), respectively.

The learning objective of DSGANs is as follows:
G∗ = argmin

G
max

Disx,Disy
L (G,Disx, Disy) . (8)

D. Multi-ConDoS Self-Supervised Medical Image
Segmentation

DSGANs first uses unlabeled bimodal data in the train-
ing set to learn the beneficial representations of multimodal
images. To learn feature representations comprehensively, we
preserve all slices that contain the corresponding organs (i.e.,
only discard medical images that are all black). Since the last
layer of the network is highly task-related, we then transfer
the weights of Ea (resp., Eb), SL, and the first three layers
of Da (resp., Db), to the downstream task X ⇒ label (resp.,
Y ⇒ label), where the resulting new decoder (with the first
three layers pre-trained and the last layer random initialized)
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is denoted as D′
a (resp., D′

b). Then, we fine-tune two entire
segmentation networks separately using a portion (5% and
10%) of labeled data, where only the slices that contains the
target objects (i.e., tumors) and the corresponding labels are
used.

V. EXPERIMENTS AND RESULTS

Datasets: For the evaluation of the proposed approach, we use
two publicly available multimodal datasets. (i) The Hecktor
dataset [41], [42] was released by the Hecktor challenge hosted
at MICCAI 2020 for head and neck tumor segmentation.
It contains 201 3D head and neck CT-PET scans. (ii) The
BraTS2018 dataset [43]–[45] was released by the BraTS’18
challenge hosted at MICCAI 2018 for segmenting brain tumor,
including WT (whole tumor), ET (enhancing tumor), and TC
(tumor core). All BraTS scans include four MRI modalities:
T1, T1CE, T2, and FLAIR volumes, in this work, we divide
this dataset into two parts: the multimodal volumes of T1CE
and T2 are first paired and used together as the multimodal
inputs of Multi-ConDoS, then those of FLAIR and T1 are
grouped and used together. The training set for the entire
dataset included magnetic resonance imaging (MRI) scans of
different qualities for high-grade gliomas (HGG) and low-
grade gliomas (LGG). We only use 210 3D MRI HGG in
our experiments. In the self-supervised pre-training stage, all
slices containing the corresponding organs are preserved (i.e.,
only the images that are all black will be discarded); in the
downstream stage, since the labels of the segmenting objects
(i.e,, tumors in our work) are required for fully supervised
fine-tuning, only the slices that contain the target objects (i.e.,
tumors) and the corresponding labels are preserved.

Pre-processing: We apply the following pre-processing steps:
(i) re-sampling of all volumes and corresponding labels to a
fixed pixel size 1.0× 1.0× 1.0 mm3 using nearest-neighbour
interpolation, intensity normalization of each 3D volume, clip
the value into the range [1, 99] and normalize the image
with mean and std for region nonzero. (ii) all 2D images and
corresponding 2D labels are obtained from the z-axis of 3D
volumes. The dimension d for each dataset are: (a) Hecktor: d
= 144×144, and (b) BraTS2018: d = 160×160. Note that the
medical images on both Hecktor (with CT and PET modalities)
and BraTS2018 (T1, T1ce, T2 and FLair modalities) datasets
are natively registered when they are generated from the
imaging equipments; as for other multimodal medical images,
the pre-processing of image registration should be conducted
before sending them into Multi-ConDoS for pre-training to
ensure the proper matching of the paired images.

Experimental setup: In our experiments, the multimodal
medical image datasets Hecktor and BraTS2018 are separately
divided into two subsets, i.e., the training set and the testing
set. We first use all the images in the training set to learn the
upstream pre-training model without using any annotations;
then only a small ratio (i.e., 5% and 10%) of labeled images
are used together with their labels to fine-tune the resulting
pre-trained model and obtain the final segmentation model.
Finally, the testing set is used to evaluate the performances of
the segmentation models.

Specifically, the detailed setting information for the two
datasets is as follows. Hecktor contains 201 pairs of CT and
PET volumes belonging to 201 patients, where 180 pairs (i.e.,
90%) of CT-PET volumes (25923 paired image slices in total)
are divided into the training set, and 21 pairs (i.e., 10%) of
CT-PET volumes (3026 paired image slices in total) are in
the testing set. Similarly, BraTS2018 contains 210 cases of
multimodal MRI volumes (i.e., T1CE, T2, FLAIR, and T1
modalities), which are divided into 168 training cases (80%)
and 42 testing cases (20%), with respectively 26040 and 6510
images for each modality. In the pre-training stage, all images
in the training set are used without annotations, while only
5% or 10% of annotated images in the training set are used
together with their labels for fine-tuning.

Implementation Details: Our Multi-ConDoS is implemented
based on Torch 1.6.0 and CUDA-10.1. All experiments are
done on 8 GeForce RTX 2080 GPUs. For self-supervised
learning, the Adam [46] optimizer is used, with a learning
rate of 0.0002. The temperature parameter t is set to 0.1.
Since the values of different losses have different orders of
magnitudes (i.e., LT is 10−2, LR is 10−1, LC is 100), to
avoid the dominant effect, we use the coefficient to erase their
magnitude differences and make them have relatively close
importance. So, the weights of the translation, reconstructive,
and multimodality contrastive loss (i.e., LT , LR, and LC) are
10, 1, and 0.1, respectively. The batch size is 48 for Hecktor
and 36 for BraTS2018. And a total of 200 epochs is trained.

For transfer learning, the U-Net [47] for downstream seg-
mentation tasks is also trained with the Adam optimizer. The
initial learning rate is 0.0002, the weight decay is 0.0001, and
the learning rate strategy is warmup-cosine-lr. When using
5% labels, the batch size is set to 31 for Hecktor and 56
for BraTS2018. When using 10% labels, the batch size is
set to 90 for Hecktor and 70 for BraTS2018. To make the
network reach convergence, 70 epochs are trained for Hecktor
and BraTS2018.

Network Architecture: We use the U-Net, which includes
four downsampling and upsampling modules, as a segmenta-
tion backbone network for all methods. Each downsampling
module consists of two 3 × 3 convolutions and a 2 × 2
maxpooling with stride 2, while each upsampling module
consists of two 3 × 3 convolutions and a 2 × 2 transposed
convolution with stride 2. This U-Net network also serves as
the backbone network of DSG. The detailed network structure
of DSG with different shared layer strategies is shown in
Table I, where f , h, and w are the number of filters, the
height of the input images, and the width of the input images,
respectively.

Evaluation: Two widely used evaluation metrics for medical
image segmentations are used, i.e.,: Dice similarity coef-
ficient (DSC) and sensitivity (Sen). The definitions are as
follows: DSC = 2 ∗ TP/(FP + 2 ∗ TP + FN) and Sen =
TP/(TP + FN), where TP , FP , TN , and FN are True
Positive, False Positive, True Negative, and False Negative,
respectively. The value range of DSC and Sen is [0, 1], and the
higher the value of these indicators, the better. All assessment
metrics were calculated using each patient’s 3D scan and then



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2022

TABLE I
NETWORK ARCHITECTURE OF ONE BRANCH OF THE DOMAIN SHARING GENERATOR (DSG) WITH DIFFERENT SETTINGS OF SL.

Net Layer Output Shape SL1d
1u SL2d

2u SL3d
3u

Input layer Conv2d, BatchNorm2d, ReLU
(f, h, w) not share not share not shareConv2d, BatchNorm2d, ReLU

Downsampling layer1
MaxPool2d

(f × 2, h/2, w/2) not share not share not shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Downsampling layer2
MaxPool2d

(f × 4, h/4, w/4) not share not share shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Downsampling layer3
MaxPool2d

(f × 8, h/8, w/8) not share share shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Downsampling layer4
MaxPool2d

(f × 16, h/16, w/16) share share shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Upsampling layer1
ConvTranspose2d

(f × 8, h/8, w/8) share share shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Upsampling layer2
ConvTranspose2d

(f × 4, h/4, w/4) not share share shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Upsampling layer3
ConvTranspose2d

(f × 2, h/2, w/2) not share not share shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Upsampling layer4
ConvTranspose2d

(f, h, w) not share not share not shareConv2d, BatchNorm2d, ReLU
Conv2d, BatchNorm2d, ReLU

Output layer Conv2d (1, h, w) not share not share not share

averaged as final results.
Baselines: To evaluate the performance of Multi-ConDoS, ran-
domly initialized U-Nets without self-supervised pre-training,
i.e., fully supervised learning from scratch (denoted Fully
Supervised), using 5% and 10% annotations are selected as
our original baselines.

Several state-of-the-art self-supervised learning methods ap-
plied in the field of medical image segmentation are chosen
as the self-supervised learning baselines in our experiments,
namely, Rotation [10], Jigsaw [11], M-Jigsaw [12], Exem-
plar [28], CPC [30], SimCLR [14], BYOL [18], SwAV [19],
G-L [9], and ContIG [20]. We evaluate the quality of rep-
resentations learned from different self-supervised methods in
the following way. Transfer the model weights derived from
different self-supervised methods to several downstream tasks,
then fine-tune with different ratios of annotated data, and
finally measured their impact in Section IV-A.

Since semi-supervised learning is another paradigm to
address the scarcity of medical labels, to demonstrate the
superiority of our method, we not only compare our methods
with the self-supervised SOTA methods but also with several
state-of-the-art semi-supervised learning methods applied in
medical image segmentation, namely, MT [33], DTML [34],
and SASS [35], which are called the semi-supervised learning
baselines. Finally, we also show the fully supervised results
using large ratios (50% and 100%) of annotations.

All baselines are implemented and run using similar proce-
dures and settings as those in their original papers, where all

self-supervised methods (including our Multi-ConDoS method
and the self-supervised baselines) are learned in a two-stage
learning ways, i.e., first pre-trained using only unlabeled
data and then fine-tuned using solely labeled data, while all
the semi-supervised baselines (MT, DTML, and SASS) are
directly trained using both labeled and unlabeled data in a
one-stage learning way; and additional parameter adjustments
are made to our best efforts.

A. Main Results

To investigate the effectiveness of Multi-ConDoS, we con-
duct experiments on two datasets and compare the per-
formance of Multi-ConDoS to three state-of-the-art base-
lines: Fully Supervised Baseline (i.e., Fully Supervised), Self-
Supervised Baselines (i.e., Rotation, Jigsaw, M-Jigsaw, Ex-
emplar, CPC, SimCLR, BYOL, SwAV, G-L, and ContIG),
and Semi-Supervised Baselines (i.e., MT, DTML, SASS). For
a fair comparison, we use the same backbone network (U-
Net) with 5% and 10% annotations across all methods. The
experimental results are shown in Table II. A visualization
of the segmentation results of Multi-ConDoS and the self-
supervised and semi-supervised baselines on the Hecktor and
BraTS2018 databases is shown in Fig. 2.

As shown in Table II, Multi-ConDoS generally outperforms
all the state-of-the-art self-supervised and semi-supervised
medical image segmentation baselines in terms of all eval-
uation metrics and two small label-ratio settings (i.e., 5% and
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TABLE II
RESULTS OF THE PROPOSED MULTI-CONDOS AND THE BASELINES ON HECKTOR(CT, PET) AND BRATS2018(T1CE, T2, FLAIR, T1) DATASETS.

Ratios Methods
Hecktor BraTS2018

CT PET T1CE T2 FLAIR T1
DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen

5%

Fully Supervised Learning from Scratch with Partial Labeled Data
Fully Supervised 0.1740 0.2337 0.5452 0.7044 0.3234 0.2703 0.3952 0.4371 0.4035 0.4837 0.1743 0.2702

Self-Supervised Learning Baselines
Rotation [10] 0.1542 0.1918 0.5525 0.7382 0.4239 0.3837 0.3718 0.3704 0.4156 0.6323 0.2218 0.3804
Jigsaw [11] 0.2119 0.2599 0.5145 0.6366 0.3564 0.3138 0.3988 0.4055 0.4341 0.6042 0.1967 0.2779

M-Jigsaw [12] 0.1886 0.2324 0.5814 0.7083 0.4083 0.3485 0.3702 0.3770 0.4463 0.6233 0.1997 0.2830
Exemplar [28] 0.1872 0.2394 0.5924 0.6646 0.3525 0.3666 0.3850 0.4028 0.4325 0.6137 0.1711 0.1980

CPC [30] 0.2102 0.2520 0.5784 0.6557 0.4452 0.3808 0.3842 0.4003 0.3421 0.5469 0.2152 0.3955
SimCLR [14] 0.2201 0.3113 0.5720 0.7143 0.5403 0.5737 0.4610 0.5870 0.4342 0.5396 0.2908 0.4376
BYOL [18] 0.1967 0.2555 0.5780 0.6879 0.5245 0.5590 0.4487 0.5603 0.4561 0.6297 0.2811 0.4545
SwAV [19] 0.2186 0.3793 0.5517 0.7091 0.3252 0.4321 0.4160 0.5564 0.4346 0.6052 0.2277 0.4466

G-L [9] 0.1754 0.1719 0.5615 0.6993 0.3195 0.4130 0.4412 0.5281 0.4355 0.5603 0.2137 0.2917
ContIG [20] 0.1755 0.3208 0.5458 0.7452 0.3112 0.3597 0.4217 0.5389 0.4261 0.5586 0.1859 0.2524

Semi-Supervised Learning Baselines
MT [33] 0.2340 0.3295 0.5959 0.6957 0.5317 0.4976 0.4491 0.5718 0.4238 0.4880 0.2489 0.3241

DTML [34] 0.2857 0.3219 0.5819 0.7040 0.4889 0.4730 0.4159 0.4646 0.3868 0.3992 0.2223 0.2080
SASS [35] 0.2604 0.3119 0.5923 0.7079 0.4841 0.4108 0.4197 0.4524 0.4380 0.4980 0.2061 0.2112

The Proposed Solution
Multi-ConDoS 0.3025 0.4293 0.6430 0.7488 0.5752 0.5747 0.4730 0.5469 0.4569 0.6340 0.3161 0.5335

10%

Fully Supervised Learning from Scratch with Partial Labeled Data
Fully Supervised 0.2541 0.2875 0.5769 0.7067 0.4451 0.3696 0.4288 0.4716 0.4489 0.6225 0.2476 0.3287

Self-Supervised Learning Baselines
Rotation [10] 0.2447 0.3026 0.6102 0.7339 0.4940 0.4321 0.4261 0.4485 0.4365 0.6138 0.2901 0.4336
Jigsaw [11] 0.2818 0.3598 0.5860 0.6643 0.5416 0.4879 0.4680 0.5387 0.4520 0.5981 0.2914 0.3570

M-Jigsaw [12] 0.2916 0.3396 0.6111 0.7440 0.5037 0.4364 0.4707 0.5053 0.4504 0.6149 0.2993 0.3810
Exemplar [28] 0.2797 0.3237 0.5960 0.7195 0.4914 0.4579 0.4366 0.4834 0.4678 0.6742 0.2472 0.3967

CPC [30] 0.2672 0.2880 0.5952 0.6695 0.5429 0.4937 0.4882 0.5540 0.3997 0.5481 0.3026 0.3828
SimCLR [14] 0.2951 0.3895 0.5779 0.7773 0.6024 0.6217 0.4846 0.5729 0.4720 0.5217 0.3551 0.4868
BYOL [18] 0.3013 0.3930 0.5891 0.7927 0.5991 0.6323 0.4850 0.5710 0.4763 0.6329 0.3458 0.3535
SwAV [19] 0.2550 0.3340 0.5771 0.7804 0.4515 0.5646 0.4587 0.5794 0.4543 0.6184 0.2914 0.4694

G-L [9] 0.2784 0.2945 0.5923 0.7304 0.4575 0.5045 0.4645 0.5718 0.4504 0.6691 0.2685 0.4086
ContIG [20] 0.2572 0.3742 0.5728 0.7405 0.4464 0.4472 0.4346 0.5446 0.4509 0.6072 0.2793 0.3899

Semi-Supervised Learning Baselines
MT [33] 0.2802 0.2467 0.6347 0.7067 0.6021 0.5580 0.4689 0.5510 0.4372 0.4897 0.3497 0.4496

DTML [34] 0.3129 0.3669 0.6253 0.7251 0.6423 0.6191 0.4897 0.5022 0.4067 0.4404 0.3129 0.2930
SASS [35] 0.2924 0.4586 0.6251 0.6993 0.6413 0.6034 0.4813 0.4736 0.4382 0.5242 0.3373 0.3481

The Proposed Solution
Multi-ConDoS 0.3442 0.4970 0.6488 0.8012 0.6246 0.6436 0.5045 0.5566 0.4805 0.6281 0.3749 0.6149

50% Fully Supervised 0.3114 0.3574 0.6252 0.6582 0.5941 0.5324 0.5094 0.5328 0.4830 0.5664 0.3581 0.4564
100% Fully Supervised 0.3927 0.4736 0.6475 0.7307 0.7453 0.7204 0.5556 0.5575 0.5164 0.6561 0.4207 0.4923

10%) on both datasets, and its performances are similar to
(and sometimes even better than) the fully supervised solution
using much higher ratios (i.e., 50% and 100%) of label data.
This observation proves that the proposed Multi-ConDoS can
achieve superior medical image segmentation performances
using only a small number of annotations, which thus greatly
reduces the labeling workload of applying intelligent medical
image segmentation systems in clinical practices. The detailed
analysis is as follows.

Compare with Fully Supervised Learning from Scratch. As
shown in Table II, both self-supervised learning and semi-
supervised learning methods (including the proposed Multi-
ConDoS) achieve much better segmentation performances than
the fully supervised baseline with the same ratio of labeled
data in also cases on both datasets. This is because besides of
the small amount of labeled data, self-supervised and semi-

supervised methods can mine additional useful information
from the large amount of unlabeled data.

Furthermore, Multi-ConDoS generally outperforms the
baseline model that is fully supervised learning from scratch
by a large margin with 5% and 10% annotations. The perfor-
mance of Multi-ConDoS with 5% annotations can be close
to or even better than that of the fully supervised method
with 50% annotations. As for 10% annotations, Multi-ConDoS
not only outperforms the fully supervised method with 50%
annotations but also outperforms the fully supervised method
with 100% annotations in the PET modality on Hecktor. This
is because Multi-ConDoS can use the complementary mutual
information of multimodality data for self-supervised pre-
training (i.e., using the additional information in one modality
to enhance the feature learning of another), while this can
not be achieved by the fully supervised work. This argument
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Fig. 2. Visualized segmentation results on the Hecktor and BraTS2018 datasets with 10% labeled data. In the first four rows, S1 and S2 are two
paired samples in the Hecktor dataset, where the head and neck tumor (only one type of tumor) is marked with white in the segmentation results.
In the last four rows, S3 and S4 are two paired samples in the BraTS2018 dataset, where WT (whole tumor), ET (enhancing tumor), and TC (tumor
core) are marked with light gray, medium gray and white, respectively, in segmentation results. As observed, our segmentation results are closer to
ground truth and better than other methods in both two modalities.

is also supported by the observation in Table II that the
similar the multimodal data, the smaller the improvement gaps
between Multi-ConDoS and the fully supervised baseline (e.g.,
the T1CE and T2 modalities on BraTS are more similar than
the CT and PET modalities on Hecktor, so the improvement
gaps on BraTS is generally smaller).
Compare with Self-Supervised Learning Baselines. Then,
we further compare our Multi-ConDoS with the state-of-
the-art self-supervised methods, i.e., Rotation, Jigsaw, M-
Jigsaw, Exemplar, CPC, SimCLR, BYOL, SwAV, G-L, and
ContIG. We can see that our Multi-ConDoS also significantly
outperforms these methods in almost all cases on both datasets.
Consequently, This proves our argument that by integrating
domain translation and domain sharing techniques with multi-
modal contrastive learning to achieve mutual complementation
of modal information, Multi-ConDoS is capable to learn more
comprehensive and fruitful information and features from the
unlabeled multimodal data than the SOTA self-supervised
contrastive learning baselines, and thus achieves better medical
image segmentation performances.

In addition, we have observed that our method’s Sen results
may not always the best in some scenarios. This can be
attributed to the challenge of distinguishing between lesions
and the background, particularly at the edges where they
appear similar. To address this issue, we plan to explore
attention mechanisms [48] in the future to enable the model
to focus more on foreground lesions.
Compare with Semi-Supervised Learning Baselines. Since
semi-supervised learning is another paradigm to address the
problem of lacking labeled data, to demonstrate the superiority
of our method, we also compare our work with the SOTA

semi-supervised baselines. The results in Table II shows that
our method generally outperforms semi-supervised baselines
in all evaluation cases on both datasets. This is because, com-
pared with single-modality-based semi-supervised methods,
our method adequately conducts the mutual complementation
of multimodal beneficial information to achieve superior per-
formance.

In summary, Table II exhibits that Multi-ConDoS gener-
ally achieves better segmentation performances than the fully
supervised, self-supervised, and semi-supervised baselines on
all modalities of two datasets in terms of DSC and Sen
metrics. This is because (i) Multi-ConDoS keeps the same
inputs of pre-training and segmentation networks, avoiding the
domain shift problem, (ii) Multi-ConDoS utilizes multimodal
medical images to learn more comprehensive object features
via contrastive domain translation, and (iii) Multi-ConDoS
utilizes novel domain sharing generative adversarial networks
(DSGANs) to achieve a contrastive domain translation and to
learn both specific and general features more effectively using
domain-sharing layers and multimodal contrastive loss.
Analysis of Visualized Segmentation Results. Moreover, all
the above findings are also well supported by the visualized
results in Fig. 2, where Multi-ConDoS achieves obviously
better (i.e., more similar to the ground-truth) segmentation
results than all the self- and semi-supervised medical image
segmentation methods. Please note that, although there are
some algorithms with similar results to ours in a specific
modality on a certain dataset, as our work is based on multi-
modal segmentation and our goal is to get better segmentation
results in both modalities, we find that there is not any existing
methods having segmentation results that are similar to ours
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TABLE III
RESULTS OF OUR ABLATION STUDIES ON THE HECKTOR AND BRATS2018 DATASETS.

Ratios Methods
Hecktor BraTS2018

CT PET T1CE T2 FLAIR T1
DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen

5%

Fully Supervised 0.1740 0.2337 0.5452 0.7044 0.3234 0.2703 0.3952 0.4371 0.4035 0.4837 0.1743 0.2702
Con-Only 0.1943 0.2859 0.5493 0.6606 0.3623 0.4108 0.4072 0.4599 0.4105 0.5611 0.1779 0.3263
P-GAN 0.2132 0.2930 0.5465 0.6814 0.4575 0.4428 0.4117 0.4731 0.4167 0.5748 0.2255 0.3330

Cycle-GAN 0.2254 0.2801 0.5598 0.7805 0.4502 0.4462 0.4144 0.4620 0.4238 0.6141 0.2341 0.3377
Cycle-P-GAN 0.2279 0.2733 0.5630 0.7936 0.4788 0.4339 0.4128 0.4679 0.4259 0.6167 0.2363 0.3699

Multi-DoS 0.2503 0.4277 0.5986 0.7852 0.4946 0.4648 0.4248 0.4993 0.4401 0.6035 0.2557 0.3792
Multi-Con 0.2977 0.4219 0.6214 0.7681 0.5621 0.5640 0.4302 0.5405 0.4237 0.6153 0.2999 0.4301

Multi-ConDoS (OURS) 0.3025 0.4293 0.6430 0.7488 0.5752 0.5775 0.4730 0.5469 0.4569 0.6340 0.3161 0.5335

10%

Fully Supervised 0.2541 0.2875 0.5769 0.7067 0.4451 0.3696 0.4288 0.4716 0.4489 0.6225 0.2798 0.3934
Con-Only 0.2634 0.3648 0.5862 0.7773 0.5146 0.4993 0.3994 0.4432 0.4504 0.6238 0.2802 0.3518
P-GAN 0.2602 0.3354 0.5953 0.7804 0.5296 0.5087 0.4194 0.4363 0.4514 0.6154 0.2806 0.3422

Cycle-GAN 0.2607 0.3222 0.5964 0.8075 0.5235 0.5103 0.4222 0.4617 0.4527 0.6329 0.2832 0.3478
Cycle-P-GAN 0.2715 0.2829 0.5936 0.8158 0.5393 0.5010 0.4213 0.4618 0.4561 0.6369 0.3166 0.4254

Multi-DoS 0.2819 0.4849 0.6261 0.8036 0.5558 0.5247 0.4504 0.5051 0.4622 0.6230 0.3183 0.4901
Multi-Con 0.3315 0.4580 0.6269 0.7783 0.5807 0.6264 0.4616 0.5241 0.4730 0.6653 0.3436 0.4759

Multi-ConDoS (OURS) 0.3442 0.4970 0.6488 0.8012 0.6246 0.6436 0.5045 0.5566 0.4805 0.6281 0.3586 0.4871

on both modalities, e.g., the result of G-L (resp., M-Jigsaw)
has a good segmentation in S1.PET (resp., S1.PET), the
segmentation result is slightly worse in S1.CT (resp., S1.CT).

Specifically, the segmentation results of the CT and PET
modality of Hecktor at the first and second rows of Fig. 2 show
that: (i) the segmentation results of M-Jigsaw are better than
Jigsaw, (ii) the segmentation results of M-Jigsaw and Multi-
ConDoS are better than others, and (iii) the segmentation
performance of Multi-ConDoS is better than the self- and
semi-supervised learning methods baselines.

Similarly, from the segmentation results of T1CE, T2,
FLAIR and T1 modality of BraTS2018 at the third to sixth
rows of Fig. 2, we can see that the segmentation results of the
proposed Multi-ConDoS is best among all methods. Therefore,
these visualized observations clearly demonstrate again that by
the proposed domain-sharing generative adversarial network
and multimodal contrastive learning, Multi-ConDoS remedies
the drawbacks of the existing self-supervised medical image
segmentation methods, and achieves a much better perfor-
mance in medical image segmentation tasks with a small
amount of annotations.

B. Ablation Studies

Since there are three improvements, i.e., domain translation,
multimodal contrastive learning and domain sharing layers, ab-
lation studies are conducted to verify the effectiveness of these
advanced components. Specifically, we have implemented
six intermediate models for self-supervised pre-training: (i)
Con-Only means the self-supervised pre-training using only
multimodal contrastive learning loss; (ii) P-GAN denotes the
pre-training using the classic paired image translation model,
Pix2Pix [24]; (iii) Cycle-GAN means the pre-training using
the vanilla CycleGAN [22] to achieve domain translation;
(iv) Cycle-P-GAN means the domain translation based pre-
training is achieved by the combination of vanilla CycleGAN
and Pix2Pix (i.e., the cyclic extension of Pix2Pix or the
CycleGAN variant with pairwise images and LT loss); (v)

CT
PET

(a) Multi-DoS

CT
PET

(b) Multi-ConDoS

Fig. 3. Visualization of the learned feature embeddings of Multi-
DoS and Multi-ConDoS on the Hecktor datasets. The closer the
CT (green circle) and the corresponding PET (purple circle) are
embedded, the better the learned modality-shared features.

Multi-DoS denotes the pre-training using a simplified Multi-
ConDoS without multimodal contrastive loss (i.e., extending
Cycle-P-GAN based domain translation with domain sharing
layers); (vi) Multi-Con is the pre-training using a simplified
Multi-ConDoS, where the originally shared layers are trained
separately but not shared, (i.e., extending Cycle-P-GAN based
domain translation with multimodal contrastive loss). The
ablation studies are conducted on Hecktor and BraTS2018
datasets using 5% and 10% ratios of annotations, and the
corresponding results are shown in Table III. On the other
hand, to study the effectiveness of different losses in our
method, we also conduct loss ablation experiments on two
datasets with 5% labeled data as shown in Table V.
Effectiveness of Self-Supervised pre-training. We first com-
pare the results using Con-Only, P-GAN, and Cycle-GAN for
pre-training with those of the fully supervised baselines that
are training from scratch. The results show that Con-Only,
P-GAN and CycleGAN all greatly outperform the fully super-
vised baseline in medical image segmentation tasks. This thus
proves that multimodal contrastive learning, Pix2Pix-based
domain translation, and CycleGAN-based domain translation
are all effective for self-supervised pre-training, which will
enhance the performances of self-supervised medical image
segmentation using only a small number of labeled data.
Effectiveness of Combining P-GAN and Cycle-GAN for
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TABLE IV
QUANTITATIVE SIMILARITY RESULTS OF TRANSLATION IMAGES (I.E., X′ AND Y ′) AND RECONSTRUCTION IMAGES (I.E., X′′ AND Y ′′) W.R.T. REAL IMAGES (X

AND Y ) IN TERMS OF FID AND SSIM ON HECKTOR AND BRATS2018.

Modalities Methods Trans.X’ Trans.Y’ Rec.X” Rec.Y”
FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑

Hecktor
(CT-PET)

P-GAN 79.2516 0.5976 64.4343 0.9909 - - - -
Cycle-GAN 81.0649 0.5904 80.9264 0.9898 119.4201 0.5508 64.4062 0.9925

Cycle-P-GAN 76.4773 0.5966 62.5630 0.9925 112.6794 0.5611 60.2657 0.9925
Multi-DoS 75.8879 0.5968 61.2264 0.9925 107.8398 0.5616 59.7154 0.9925
Multi-Con 75.1041 0.5972 60.4564 0.9925 109.5743 0.5624 59.4457 0.9926

Multi-ConDoS (OURS) 74.8872 0.5971 60.3395 0.9926 107.0693 0.5662 58.3923 0.9925

BraTS2018
(T1CE-T2)

P-GAN 74.4959 0.6263 87.9765 0.5789 - - - -
Cycle-GAN 86.7709 0.6165 98.2861 0.5612 114.0237 0.5519 71.1314 0.6556

Cycle-P-GAN 74.4878 0.6373 89.9744 0.5739 52.1376 0.6288 52.1073 0.6613
Multi-DoS 73.6858 0.6446 88.3821 0.5863 51.0662 0.6177 50.8883 0.6698
Multi-Con 73.4416 0.6421 87.6225 0.5843 50.0329 0.6223 52.0842 0.6602

Multi-ConDoS (OURS) 73.1257 0.6616 82.8712 0.5987 47.4418 0.6441 50.1753 0.6620

BraTS2018
(FLAIR-T1)

P-GAN 39.7750 0.7592 41.3167 0.7654 - - - -
Cycle-GAN 40.3078 0.7088 47.0860 0.7606 34.0731 0.7219 46.1486 0.7652

Cycle-P-GAN 33.1999 0.7900 43.1002 0.7734 32.3369 0.7915 43.4657 0.7752
Multi-DoS 32.0383 0.8029 39.8608 0.7961 31.3009 0.8061 42.0886 0.7854
Multi-Con 28.9621 0.7974 44.8223 0.7757 28.7323 0.8009 45.2007 0.7745

Multi-ConDoS (OURS) 27.9031 0.8052 41.7130 0.7845 27.5386 0.8076 41.6759 0.7922

Domain Translation. Then, we further evaluate the effective-
ness of three potential domain translation solutions in Multi-
ConDoS, i.e., P-GAN, Cycle-GAN, and Cycle-P-GAN. As
shown in Table III, the results of pre-training using Cycle-P-
GAN for domain translation are generally better than that of
solely using P-GAN or Cycle-GAN. This is because (i) com-
paring to the classic paired image translation model, Pix2Pix,
CycleGAN’s cyclic training strategy is very beneficial for
fully and comprehensively learning modal feature information:
Pix2Pix only learns the unidirectional mapping relationship of
pairwise multimodal images, while CycleGAN’s cyclic train-
ing strategy can learn the one-to-one bidirectional mapping
relationship of pairwise multimodal images, which helps the
generator network learn a more accurate latent representation
space; (ii) by integrating Pix2Pix with CycleGAN, similar to
the paired image translation models, the resulting Cycle-P-
GAN can also learn the pixel-wise detailed information and
features. Therefore, this proves that integrating P-GAN and
Cycle-GAN in Multi-ConDoS for domain translation is sound
and effective for the model to learn the features of multimodal
medical images more comprehensively.

Effectiveness of Domain Sharing Layers. Furthermore, as
shown in Table III, Multi-Dos (extending Cycle-P-GAN with
domain sharing layers) is generally better than Cycle-P-GAN,
and Multi-ConDoS is better than Multi-Con. This is because
the domain sharing layers are incorporated into Multi-Dos and
Multi-ConDoS make the models’ capable of learning not only
domain-specific information but also domain-sharing features
from multimodal medical images. The effectiveness of using
domain sharing layers is thus demonstrated.

Effectiveness of Multimodal Contrastive Loss. Finally, in
Table III, the results of Con-Only, Multi-Con, and Multi-
ConDoS are generally better than those of the fully supervised

baseline, Cycle-P-GAN, and Multi-DoS, respectively. This is
because the multimodal contrastive loss can help the deep
models learn valuable mutual consistency information of mul-
timodal medical images. Therefore, it well demonstrates the
effectiveness of using multimodal contrastive loss in Multi-
ConDoS.

In addition, the effectiveness of multimodal contrastive loss
can be visualized in Fig. 3, where the learned embedding of
the paired modal (CT, PET) features are shown. We randomly
select 40 pairs of images from the Hecktor dataset. The
features of these pairs of images are mapped into the same
latent space through the shared layers (SL), and the feature
representation is obtained. Then, the feature dimension is
reduced to 2 by t-SNE [49]. The closer the CT (green circle)
and the corresponding PET (purple circle) embedding, the
better modality-shared features are learned. We observe that,
compared to Multi-DoS, the paired modal feature embedding
in the Multi-ConDoS latent space is closer. Therefore, the use
of the multimodal contrastive loss effectively enhances the
learning of modality-shared features.

Analysis of Cross-Domain Image Translation Capability.
To further demonstrate that all three proposed improvements
(i.e., combining Pix2Pix with Cycle-GAN, domain-sharing
layers, and multimodal contrastive loss) are effective and
essential for Multi-ConDoS to achieve superior cross-domain
image translation, additional experiments are further con-
ducted to evaluate and compare the similarities between the
synthesized translation images (resp., reconstruction images),
i.e., X ′ and Y ′ (resp., X ′′ and Y ′′), generated by the proposed
Multi-ConDoS and five GAN-based intermediate models (i.e.,
P-GAN, Cycle-GAN, Cycle-P-GAN, Multi-Dos, and Multi-
Con), and the corresponding real images, i.e., X and Y .

Two widely used image quality evaluation metrics, Fréchet
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(c) BraTS2018 (FLAIR-T1) 
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Fig. 4. Visualized cross-domain image generation results of Multi-ConDoS and five GAN-based intermediate models on Hecktor and BraTS2018,
where translation images X′ (resp., Y ′) are generated from real images Y (resp., X), and we then use X′ (resp., Y ′) to generate reconstruction
images Y ′′ (resp., X′′). As P-GAN is a unidirectional instead of cyclic generative model, it generates only translation images but no reconstruction
images. The areas included in red boxes are regions with relatively significant differences between images (resp., X′, Y ′, X′′ and Y ′′) generated
by different methods, so we box these areas to make it easier to distinguish the different image generation capabilities of different models.

Inception Distance (FID) [50] and Structural Similarity Index
(SSIM) [51], are used to measure the quantitative similarity
values, where FID measures the statistical distribution dis-
tances between real and generated images in the feature space,
and SSIM estimates the structural similarities between the
real and generated images. Consequently, with the increase
of similarities between the real and generated images, the FID
values decrease and the SSIM values increase.

As shown in Table IV, we have the following observations.
First, by comparing the results of P-GAN, Cycle-GAN, and
Cycle-P-GAN, we find that the results of Cycle-P-GAN con-
stantly outperforms those of P-GAN and Cycle-GAN; this
finding further proves our conclusion that integrating P-GAN
and Cycle-GAN in Multi-ConDoS for domain translation
is sound and effective for the model to learn the features
of multimodal medical images more comprehensively, and
capable to enhance the model’s cross-domain image translation
capability. Second, we also notice that, by importing the design
of sharing layers, Multi-DoS generally outperforms Cycle-P-

GAN, while the results of Multi-ConDoS are generally better
than those of Multi-Con; this finding greatly supports our
argument that although using the shared layers may lose some
domain-specific information, this will not weaken but enhance
the model’s capability in cross-domain image translation; this
is because the shared layers sacrifice an acceptable extent
domain-specific information in exchange for better modeling
of domain-sharing information to help the model comprehen-
sively learn not only the differences but also the similarities
between different modalities, which thus avoid the potential
“domain-overfitting” problem and enhance the model’s gen-
eralization. Third, we also observe that the results of Multi-
ConDoS (resp., Multi-Con) are generally better than those of
Multi-ConDoS (resp., Cycle-P-GAN); this observation asserts
that the proposed multimodal contrastive loss can also boost
the generation models’ cross-domain generation ability be-
cause it is helpful for the models to better learn the differences
and similarities between different domains. Finally, it is ob-
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TABLE V
RESULTS OF LOSS-BASED ABLATION STUDIES ON THE HECKTOR AND BRATS2018 DATASETS WITH 5% LABELED DATA.

Losses
Hecktor BraTS2018

CT PET T1CE T2 FLAIR T1
DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen

Training from scratch 0.1740 0.2337 0.5452 0.7044 0.3234 0.2703 0.3952 0.4371 0.4035 0.4837 0.1743 0.2702
LC 0.2177 0.3356 0.5713 0.7097 0.3724 0.4287 0.4137 0.5180 0.4140 0.5863 0.2299 0.3565
LT 0.2098 0.2802 0.5544 0.7112 0.3600 0.4432 0.4122 0.5116 0.4269 0.5771 0.2221 0.3328

LGAN 0.2132 0.2930 0.5465 0.6814 0.3734 0.4220 0.4037 0.5134 0.4216 0.5683 0.2255 0.3330
LT + LR 0.2280 0.3264 0.5672 0.7135 0.4027 0.4378 0.4211 0.5204 0.4302 0.5671 0.2252 0.3407
LT + LC 0.2237 0.3434 0.5716 0.7138 0.4125 0.4543 0.4344 0.5392 0.4307 0.5861 0.2557 0.3792

LGAN + LR 0.2200 0.3584 0.5822 0.7281 0.4097 0.4237 0.4340 0.5213 0.4377 0.5812 0.2363 0.3699
LGAN + LC 0.2256 0.3655 0.5693 0.7149 0.4168 0.4800 0.4359 0.5253 0.4370 0.5950 0.2848 0.3769
LGAN + LT 0.2553 0.3294 0.5711 0.7256 0.4279 0.4536 0.4336 0.5049 0.4246 0.6111 0.2498 0.3706

LT + LR + LC 0.2337 0.4076 0.5737 0.7188 0.4317 0.5390 0.4445 0.5447 0.4303 0.6159 0.3005 0.4398
LGAN + LR + LC 0.2268 0.4018 0.5836 0.7239 0.5057 0.5501 0.4533 0.5454 0.4433 0.6415 0.3059 0.4717
LGAN + LT + LR 0.2458 0.4157 0.5850 0.7241 0.5003 0.5297 0.4478 0.5442 0.4401 0.6035 0.2991 0.4209
LGAN + LT + LC 0.2977 0.4219 0.6117 0.7361 0.5117 0.5553 0.4712 0.5293 0.4373 0.6115 0.3082 0.4245

LGAN + LT + LR + LC (OURS) 0.3025 0.4293 0.6430 0.7488 0.5752 0.5775 0.4730 0.5469 0.4569 0.6340 0.3161 0.5335

vious that the proposed Multi-ConDoS generally outperforms
all the GAN-based intermediate generation models in terms
of both evaluation metrics on both datasets; this demonstrates
our conclusion that all three proposed improvements (i.e.,
Combining Pix2Pix with Cycle-GAN, domain-sharing layers,
and multimodal contrastive loss) are effective and essential
for Multi-ConDoS to achieve superior cross-domain image
translation.

Fig. 4 shows the visualized examples of Multi-ConDos and
five GAN-based intermediate in cross-domain image transla-
tion, where the examples on Hecktor (CT-PET) (in Fig. 4 (a))
and BraTS (T1CE-T2) (in Fig. 4 (b)) are medical images with
lesions, while those on BraTS2018 (FLAIR-T1) (in Fig. 4
(c)) are images without lesion. Generally, we can have the
observations similar to Table IV in Fig. 4. For example, in
Fig. 4 (a) and (b), compared with Cycle-P-GAN (resp., Multi-
Con), Multi-DoS (resp., Multi-ConDoS) Can generate medical
images whose lesion areas are more similar to those of real
images; furthermore, in Fig. 4 (c), comparing to the real
images, the medical images generated by Multi-DoS (resp.,
Multi-ConDoS) have more accurate texture and boundary
details than those generated by Cycle-P-GAN (resp., Multi-
Con); these thus proves the effectiveness of sharing layers in
obtaining better cross-domain image translation. Besides these,
the effectiveness of integrating Pix2Pix with Cycle-GAN, and
multimodal contrastive loss can also be clearly observed and
demonstrated in Fig. 4.

Effectiveness of Different Losses. To study the influence
of different losses in our method, we have additionally con-
ducted loss-based ablation studies on Hecktor and BraTS2018
datasets with 5% labeled data, and the corresponding results
are shown in Table V.

Specifically, Multi-ConDoS mainly consists of four types
of loss functions, i.e., multi-modal contrastive loss (LC),
translation loss (LT ), adversarial GAN loss (LGAN ), and re-
constructive loss (LR); LC here is different from the Con-Only
in Table III because the model structure is kept unchanged in
the loss-based ablation studies, i.e., there are shared layers for
all cases in Table V (including LC) but not for Con-Only.
Therefore, we first apply only a loss function for the pre-

training of deep models using unlabeled data; as shown in
Table V, the results of using LC , LT or LGAN for model pre-
training are much higher than those of training from scratch,
e.g., using LC , LT or LGAN can respectively improve the
DSC score of T1ce by 0.049, 0.0366, or 0.05. The reasons for
improvements are as follows: LC , LT , and LGAN help the
networks learn the consistency information between different
modalities, the specific details of the images, and the domain
features of different modalities, respectively. Please note that
LR can not be added solely because LT or LGAN is needed to
constrain the cross-domain generation of DSGAN and bring
the domain-transfer capability to the deep models.

Then, additional experiments are further conducted to in-
vestigate the medical image segmentation performances of
using the combinations of two loss functions (similarly, it
is meaningless to only use LC + LR because LT or LGAN

is needed for domain-transfer). We can observe in Table V
that the cases of using two loss functions together gener-
ally outperform those of using the corresponding two losses
solely in terms of all modalities on both datasets, e.g., the
segmentation results of using LGAN +LC are generally better
than those of solely using LGAN or LC . This proves that
combining different types of loss functions can enhance the
models’ segmentation performances.

Third, we study the segmentation performances of all pos-
sible combinations of using three types of loss functions,
whose results are generally better than those of two-losses
combinations, e.g., LGAN + LR + LC generally outperforms
LGAN + LC because LR can enhance the networks’ feature
learning capability by enforcing the reconstructed image to
retain as much information of the original image as possible.

Finally, we also notice that the segmentation performances
of three-losses combinations are all worse than those of our
Multi-ConDoS where all four types of losses functions are
used. Consequently, all the above findings demonstrate that
the four types of losses functions used in Multi-ConDoS are
all effective and essential for the model to achieve the superior
performances in self-supervised medical image segmentation
tasks.
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(a) Hecktor (CT) (b) Hecktor (PET) (c) BraTS2018 (T1CE)
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Fig. 5. Variation curves of the segmentation results of our Multi-ConDoS and the self-supervised and semi-supervised baselines
on different ratios (5%, 10%, 15%, 20%, and 50%) of labeled data.

C. Additional Experiments

Effectiveness of The Ratios of Labeled Data. Additional
experiments are conducted with more ratios of labeled data
to investigate the effect of the ratios of labeled data on the
segmentation performances of Multi-ConDoS and the self-
supervised and semi-supervised baselines on Hecktor (CT,
PET) and BraTS2018 (T1CE, T2, FLAIR, T1). The results
are shown in Fig. 5, containing five different ratios (5%, 10%,
15%, 20%, and 50%) of labeled data.

We have the following observations: (i) The segmentation
performances of Multi-ConDoS and the baselines generally
increase with the rise of the ratios of the labeled data, this
is because the increase of the ratios of labeled data will
gradually bring more and more strong supervision informa-
tion to the downstream fine-tuning, which thus enhances the
performances of all models. (ii) Multi-ConDoS generally out-
performs all the baselines in terms of all cases, which proves
that the self-supervised pre-training using Multi-ConDoS is
so good that, even with more and more strong supervision
information, it can still bring lots of valuable information to
boost the final segmentation performances. (iii) The improve-
ment gaps between Multi-ConDoS and the baselines gradually
reduce with the increase of the ratios, which proves that the
increase of the ratios gradually reduces the importance of self-
supervised pre-training using unlabeled data (so the advantage
of using Multi-ConDoS is gradually weakened).

Effectiveness in Additional Evaluation Metrics. Three
additional evaluation metrics, i.e., 95% Hausdorff Distance
(HD95) [52], boundary IoU (BIoU) [53], and positive predic-
tive value (PPV) [54], are used to measure the performances
of Multi-ConDoS and the self-supervised and semi-supervised
baselines. We choose these three evaluation metrics because
(i) Hausdorff Distance (HD) is a widely used distance-based
metric, here we use HD95 (the variant of HD) to eliminate the
impact of a very small subset of the outliers; (ii) Boundary

IoU (BIoU) is a widely used boundary-based metric; and (iii)
PPV, similar to DSC and Sen, is a widely used overlap-based
metric. Consequently, using diverse types of evaluation metrics
can help us evaluate the models’ segmentation performances
more comprehensively and ensure the superior segmentation
performances of our proposed Multi-ConDoS.

The segmentation results of Multi-ConDoS and the base-
lines with 10% labeled data in terms of HD95 and BIoU are
shown in Table VI, while those in PPV are shown in Table VII.
It can be observed from the tables that the relative segmenta-
tion performances of Multi-ConDoS and the baselines in terms
of HD95, BIoU, and PPV are very similar to their DSC-based
and Sen-based relative segmentation performances as shown in
Table II Consequently, we have the following findings: (i) The
self-supervised and semi-supervised baselines generally out-
perform the fully supervised baseline method, this is because
besides the limited amount of labeled data, self-supervised and
semi-supervised segmentation methods can learn additional
useful information from a large amount of unlabeled data.
(ii) Multi-ConDoS significantly outperforms the state-of-the-
art self-supervised and semi-supervised baselines in terms of
all metrics (HD95, BIoU, and PPV), comprehensively proving
the superior performances of Multi-ConDoS in medical image
segmentation tasks.

Analysis of Layer-Transfer Strategies. Additional exper-
imental studies with 10% labeled data on Hecktor and
BraTS2018 datasets have been conducted to verify the sound-
ness of transferring the weights of the encoder, shared layers,
and the first three layers of the decoder, to the downstream
task. As shown in Table VIII, we first find that by, com-
paring to training from scratch, transferring the encoder and
shared layers significantly enhance the performances in the
downstream segmentation tasks; This is because the imaging
features learned by encoders (i.e., Ea and Eb) and share layers
in pre-training are also very important in the downstream seg-
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TABLE VI
RESULTS OF MULTI-CONDOS AND THE BASELINES IN TERMS OF BIOU AND HD95 WITH 10% LABELED DATA.

Methods
Hecktor BraTS2018

CT PET T1CE T2 FLAIR T1
BIoU HD95 BIoU HD95 BIoU HD95 BIoU HD95 BIoU HD95 BIoU HD95

Fully Supervised Learning from Scratch with Partial Labeled Data
Fully Supervised 0.1224 64.0604 0.3199 41.8627 0.1643 50.9107 0.1510 43.9483 0.1724 30.4918 0.0042 59.5963

Self-Supervised Learning Baselines
Rotation [10] 0.1382 58.8788 0.3465 53.5804 0.1720 36.8101 0.1719 36.8101 0.1861 30.6972 0.0564 44.1426
Jigsaw [11] 0.1558 42.5337 0.3313 59.5274 0.2062 38.3538 0.2061 38.3538 0.2105 30.7971 0.0834 43.4044

M-Jigsaw [12] 0.1727 41.6987 0.3474 51.6693 0.2235 35.8980 0.2235 35.8980 0.1949 32.7322 0.0925 30.4919
Exemplar [28] 0.1600 44.0192 0.3401 37.3441 0.1965 45.3473 0.1965 45.3473 0.2055 31.4018 0.0604 37.9360

CPC [30] 0.1795 42.5362 0.2998 40.9564 0.1926 49.7371 0.1510 43.9483 0.2081 28.8120 0.0734 37.4265
SimCLR [14] 0.1504 37.4345 0.3581 66.4539 0.2758 37.6094 0.2020 38.0898 0.2203 28.5869 0.1247 46.2637
BYOL [18] 0.1501 47.2453 0.3397 55.0181 0.2901 36.1710 0.1820 42.4852 0.2075 27.9066 0.1201 31.8026
SwAV [19] 0.1648 59.5009 0.3673 50.8417 0.2287 56.0846 0.1889 44.0658 0.2036 38.6023 0.1035 61.8490

G-L [9] 0.1389 61.0124 0.3380 20.8051 0.2328 49.7115 0.1782 34.8908 0.2122 38.9321 0.0891 57.4882
ContIG [20] 0.1472 58.2753 0.3283 27.4594 0.2120 47.4633 0.1846 49.3227 0.2182 34.8885 0.0964 51.4963

Semi-Supervised Learning Baselines
MT [33] 0.1653 55.4624 0.3253 39.0457 0.2092 42.7724 0.2092 42.7724 0.1814 32.9597 0.0709 31.0762

DTML [34] 0.1665 48.1990 0.3307 44.4936 0.3449 36.2121 0.1943 37.1866 0.1828 28.3425 0.0861 34.3141
SASS [35] 0.1663 46.7244 0.3539 38.5084 0.3086 35.7435 0.1976 35.9732 0.1989 27.9396 0.0624 37.0571

The Proposed Solution
Multi-ConDoS 0.1738 40.9652 0.4277 25.8142 0.3110 33.8717 0.2134 34.3922 0.2321 26.7961 0.0962 30.8364

TABLE VII
THE PPV RESULTS OF OUR METHOD AND THE SELF- AND SEMI-

SUPERVISED BASELINES ON HECKTOR AND BRATS2018 WITH 10%
LABELED DATA.

Methods Hecktor BraTS2018
CT PET T1CE T2 FLAIR T1

Fully Supervised Learning from Scratch
Fully Supervised 0.2548 0.4371 0.4136 0.4300 0.4081 0.2428

Self-Supervised Learning Baselines
Rotation [10] 0.2263 0.4824 0.6599 0.4593 0.4153 0.2526
Jigsaw [11] 0.3007 0.6282 0.6731 0.4792 0.4171 0.3182

M-Jigsaw [12] 0.3125 0.5345 0.6279 0.5042 0.4241 0.2947
Exemplar [28] 0.3152 0.5854 0.6014 0.4367 0.4003 0.2456

CPC [30] 0.3237 0.5365 0.5167 0.4097 0.4260 0.3076
SimCLR [14] 0.3114 0.5235 0.6545 0.4853 0.5039 0.3459
BYOL [18] 0.3106 0.5400 0.6429 0.4293 0.4564 0.3058
SwAV [19] 0.2669 0.5386 0.4405 0.4333 0.4404 0.2562

G-L [9] 0.3184 0.6009 0.5004 0.4738 0.4052 0.2452
ContIG [20] 0.2637 0.5441 0.5388 0.3929 0.4285 0.2760

Semi-Supervised Learning Baselines
MT [33] 0.2467 0.5297 0.5611 0.4645 0.4944 0.3465

DTML [34] 0.3422 0.5622 0.6613 0.5384 0.4985 0.4400
SASS [35] 0.2856 0.5574 0.6555 0.4580 0.4880 0.3947

OURS 0.3500 0.6408 0.6846 0.5438 0.5214 0.4485

mentation tasks. This thus proves that transferring the encoder
and shared layers is reasonable. Then, we also observe that
gradually transferring the first three layers of the decoder can
also gradually improve the performances of the downstream
segmentation tasks. This finding asserts that, although not as
important as those learned by the encoder and shared layers,
the features learned in the first three layers of decoders are still
useful for the downstream learning tasks (i.e., at least better
than random initialization).

Analysis of Shared Layers Strategies. To study the capacity
of the SL on the performance of the Multi-ConDoS, we first

Fig. 6. Comparison of the different SL strategies performances on
Hecktor. We show the sum of the segmentation results of the two
modalities to better observe the effect of different SL strategies on the
overall segmentation results of the two modalities.

study the strategy of the SL. Moreover, we have described
different SL strategies in Table I in detail. To study the impact
of different SL strategies, we conduct experiments on the
Hecktor dataset with different ratios (1%, 5%, 10%, 50%,
and 100%) labeled data. Then, Fig. 6 shows the experimental
results of DSG using different SL strategies on Hecktor. In
Fig. 6, fully supervised means that we train the network from
scratch; CycleGAN represents that we use two completely
separate generators for pair-wise training; SL1d

1u represents that
we share one downsampling layer and one upsampling layer
of the middle part of the two generators; SL2d

2u and SL3d
3u are

by analogy.
Please note that in order to better observe the effect of

different SL strategies on the overall segmentation results
of the two modalities, the DSC in Fig. 6 is the sum of the
segmentation results of the two modalities.

From Fig. 6, we can observe that the three strategies
of SL1d

1u, SL2d
2u, and SL3d

3u all promote a more remarkable
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TABLE VIII
RESULTS OF USING DIFFERENT LAYER-TRANSFER STRATEGIES IN MULTI-CONDOS ON HECKTOR AND BRATS2018 DATASETS WITH 10% LABELED DATA.

ENCODER_SL DENOTES THE LAYERS OF ENCODER AND SL ARE TRANSFERRED TO DOWNSTREAM NETWORK. ENCODER_SL_D1 (RESP., ENCODER_SL_D2 AND

ENCODER_SL_D3) DENOTES THE LAYERS OF ENCODER AND SL AND THE FIRST ONE (RESP., TWO AND THREE) LAYERS OF DECODER ARE TRANSFERRED TO

DOWNSTREAM NETWORK.

Transfer Layers
Hecktor BraTS2018

CT PET T1CE T2 FLAIR T1
DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen DSC Sen

Training from scratch 0.2541 0.2875 0.5769 0.7067 0.4451 0.3696 0.4288 0.4716 0.4489 0.6225 0.2476 0.3287
Encoder SL 0.3103 0.4915 0.6126 0.7579 0.5909 0.6268 0.5003 0.5806 0.4622 0.6230 0.3442 0.6070

Encoder SL D1 0.3217 0.4752 0.6277 0.7711 0.6032 0.6260 0.5016 0.5542 0.4730 0.6653 0.3626 0.6100
Encoder SL D2 0.3392 0.4969 0.6378 0.7752 0.6165 0.6550 0.5019 0.6031 0.4789 0.6156 0.3689 0.6079

Encoder SL D3 (OURS) 0.3442 0.4970 0.6488 0.8012 0.6246 0.6436 0.5045 0.5566 0.4805 0.6281 0.3749 0.6149

CT5% CT10% PET5% PET10%
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Fig. 7. Comparison of the performances of different losses
applied to multimodality features on Hecktor and BraTS2018.

improvement in model performance than training from scratch
(fully supervised) and CycleGAN in all ratios, and the per-
formance of SL1d

1u improves the most. This is because when
too many layers are shared, the number of layers for learning
modal-specific knowledge will decrease, which will damage
the ability of the network to learn specific knowledge of
different modalities. When using the SL1d

1u strategy, both
specific and general knowledge of different modalities has
been well learned.

Analysis of Multimodal Contrastive Loss. To study the
superiority of multimodality contrastive loss, we conducted
experiments on two datasets and compared the performance of
multimodality contrastive loss with the two most commonly
used losses: L1 and MSE loss. For a fair comparison, the other
settings are all kept consistent. The results are shown in Fig. 7.
In Fig. 7, CT5% means that we use 5% annotations of Hecktor
(CT). Others are by analogy.

From Fig. 7, we can see that when using the MSE and L1
loss for the multimodality features extracted by the SL, the
performance of downstream segmentation tasks is very similar.
However, the performance is best when using multimodality
contrastive loss. This is because the MSE and the L1 loss can
only minimize the difference between positive sample pairs,
but cannot maximize the difference between negative sample
pairs like the multimodality contrastive loss. This means that
the usage of the MSE and the L1 loss can only encourage
the network to learn consistent representations, while the
multimodality contrastive loss encourages the network to learn
consistent representations and also encourages the network to
learn discriminative representations, which is very important
for the network to learn useful semantic information.
Analysis of Four Modal Selections on BraTS. There exist
four modalities in the BraTS database, therefore, to construct
segmentation models for all four modalities, we need to divide
the database into two sets of paired images, and apply the
proposed Multi-ConDoS on them separately. Therefore, in

T1CE T2 FLAIR T1
Different modality of BraTS2018 dataset

0.1

0.2

0.3

0.4
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0.7

DS
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Group B
Group C

T1CE T2 FLAIR T1
Different modality of BraTS2018 dataset
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N
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Group C

Fig. 8. Results of all four modalities of Multi-ConDoS on BraTS using
three different grouping strategies, i.e., Group A <T1CE-T2, FLAIR-
T1>, Group B<T1CE-T1, FLAIR-T2>, and Group C <T1-T2, FLAIR-
T1CE>.

order to enhance the practical values of Multi-ConDoS, in this
section, we further investigate the best grouping strategy for
BraTS and provide the results of the four modalities according
to the best group strategy.

Specifically, there exist three kinds of potential group-
ing choices: namely, Group A: <T1CE-T2, FLAIR-T1>,
Group B: <T1CE-FLAIR, T2-T1>, and Group C: <T1CE-
T1, FLAIR-T2>. Experiments of Multi-ConDoS on BraTS
are conducted by applying different grouping strategies, whose
results are shown in Fig. 8. It shows that the grouping strategy
A (denoted Group A) consistently achieves the best results for
all four modalities in terms of both DSC and Sen. This may
be because the visual differences between the paired images in
Group A (i.e., T1CE vs T2 and FLAIR vs T1) are much greater
than those in Group B and Group C. This is consistent with our
argument that the greater the difference between multimodal
data, the higher Multi-ConDoS can improve. Therefore, the
results of all four modalities in our work are obtained based on
the grouping strategy <T1CE-T2, FLAIR-T1>. Furthermore,
we believe that, when Multi-ConDoS is applied in clinical
practices that involve more than two modalities, using the
grouping strategy that can maximize the differences between
the paired modalities is most possible to obtain the best
segmentation performances.

VI. DISCUSSION AND FUTURE WORK

In this section, we further discuss three key points regarding
the application of the proposed Multi-ConDoS in real-world
clinical practices to justify its good practical values.

A. Multiple Segmentation Models in Multi-ConDoS

Theoretically, when the multi-modal images are well-
registered, they should have the same segmentation mask (i.e.,
the same ground truth). This semantic consistency between
multimodal images is exactly the theoretical basis on which
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we can utilize contrastive learning to enhance the feature
learning capability of Multi-ConDoS. However, although the
segmentation results of the two modalities are theoretically
the same after registration, we believe it is still beneficial
to construct and fine-tune multiple segmentation models for
multimodal medical images in the downstream segmentation
tasks, because this can effectively enhance the performances,
applicability and flexibility of Multi-ConDoS in real-world
clinical practices, and so as to enhance its practical value.

First, since the images of different modalities are gen-
erated using different imaging mechanisms, the information
and features contained in the paired images with different
modalities are very different. For example, as shown in Fig. 2
(visualized results) of the revised manuscript, CT (generated
by the structural imaging technique) can clearly show details
of the organs and tissues inside the human’s body, while PET
(generated by the functional imaging technique) only exhibits
(abnormal) changes in metabolic processes and physiological
activities. Therefore, although the segmentation results of the
two modalities should theoretically be the same (i.e., the same
ground truth), since it is almost impossible for deep models
to predict with 100% accuracy in practice, the multimodal
images with different information and features will result in
different practical segmentation results, which usually contain
complementary information (i.e., making different mistakes
in predictions); consequently, constructing and fine-tuning
multiple segmentation models for multimodal medical images
in the downstream segmentation tasks will provide multiple
possible predictions for one segmentation target, by adding
some post-processing operations to comprehensively consider
these possible predictions, it can provide the doctors and
patients more accurate final predictions in clinical practices,
i.e., enhance the practical segmentation performances.

Second, patients usually cannot afford to obtain multimodal
medical images, so constructing and fine-tuning multiple seg-
mentation models for multimodal medical images can sig-
nificantly enhance the applicability and flexibility of Multi-
ConDoS in practices: patients only need to get medical images
of any modality, the corresponding segmentation model can
be immediately used to automatically predict the segmenta-
tion results, which thus avoid unnecessary time and money
consumption (i.e., patients do not have to obtain or wait for
medical images of a specific modality, so save valuable time
and money for the diagnosis and treatment of the diseases).

Finally, since we only use a small number of labeled data
to fine-tune the models in the downstream segmentation tasks,
the cost of obtaining multiple segmentation models for mul-
timodal medical images is actually very low. Considering the
significant improvements of the segmentation performances,
applicability and flexibility in practices, such a limited extra
cost is affordable and reasonable.

B. pre-training Time-Cost of Using Multi-ConDoS

As presented in Section V-B, DSGANs contain multiple
modules and various loss terms, all of which are essential
and effective for our Multi-ConDoS method to achieve the
superior performances. However, this will inevitably increase

TABLE IX
THE TIME-COSTS (IN HOURS) OF MULTI-CONDOS AND THE SOTA

SELF-SUPERVISED CONTRASTIVE LEARNING BASELINES IN THE

PRETRAINING STAGE.
Methods Hecktor BraTS2018

SimCLR [14] 9.06 19.48
BYOL [18] 15.34 34.08
SwAV [19] 11.80 18.08

G-L [9] 81.40 183.68
ContIG [20] 8.06 18.72

Multi-ConDoS 16.21 36.60

the model’s learning time. Therefore, in this work, we further
compare the pre-training time-cost of Multi-ConDoS with the
state-of-the-art self-supervised contrastive learning baselines
to reveal its comparative complexity to the baselines and to
see whether or not its application value in clinical practices
will be undermined due to the complexity.

As shown in Table IX, the pre-training time-cost of Multi-
ConDoS is much lower than that of G-L, close to that of
BYOL, and higher than those of SimCLR, SwAV and ContIG.
We note that, even compared to the most efficient baselines
(i.e., ContIG on Hecktor and SwAV on BraTS), the time-
cost of Multi-ConDoS is still acceptable: only about twice of
the best one. Considering the rapid increase in the computing
capability of today’s computing devices, and the fact that the
improvement of prediction accuracy is of great significance for
medical image analysis in clinical practices (i.e., even a little
improvement in accuracy will be able to save more patients’
lives), the importance of accuracy is actually much higher
than that of efficiency for practical medical image analysis,
so we believe sacrificing a limited amount of additional
computational costs in exchange for a significant increase
in the segmentation performances is acceptable, worthy and
valuable for the practical medical image segmentation tasks.
Therefore, we believe the complexity of Multi-ConDoS is
acceptable and will not weaken its clinical value.

C. Medical Image Registration

In our work, images of different modalities need to be
registered before they are used in Multi-ConDoS; however, we
believe this requirement will not seriously affect the applica-
tion of the proposed Multi-ConDoS in medical practices. The
reasons are as follows. On one hand, there exist some multi-
modal medical images that are natively registered, e.g., the
multi-modal MR images and the CT-PET images (i.e., the ones
used in our experimental studies) have been already registered
when they are generated from the imaging equipments. On
the other hand, medical image registration has been studying
for quite a long time, there have existed many combinations
of multi-modal medical images that can be easily registered
using the existing registration solutions (e.g., MR to CT
registration [55], [56], registration of fluoroscopic X-ray to CT
[57], PET to MRI registration [58], and preoperative magnetic
resonance (MR) to intraoperative ultrasound registration [59])
or the existing medical image registration tools (such as Sim-
pleITK [60] and SimpleElastix [61]). Therefore, even if not
all, our proposed multi-modal self-supervised segmentation
solution can be applied to many clinical segmentation tasks
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by registering the corresponding multi-modal medical images
before using them as inputs. More importantly, registration
operations can bring additional benefits: after applying regis-
tration, we can use the same segmentation masks for both
modalities, which thus reduces half of the annotation time
cost. Consequently, we believe the need of image registration
will not hinder the application of our work in real-world
clinical practices; and an interesting future work is to conduct
an in-depth survey to find out all the possible combinations
of different multimodal medical images that can be properly
registered and the corresponding registration methods to guide
the application of our Multi-ConDoS in daily clinical practices.

VII. CONCLUSION

In this work, we proposed a multimodal contrastive domain-
sharing (Multi-ConDoS) approach, which is the first multi-
modal contrastive-based self-supervised medical image seg-
mentation approach that not only overcomes the domain shift
problem but also takes the advantage of the fruitful multimodal
information of medical images. In addition, the novel domain-
sharing generative adversarial networks (DSGANs) were fur-
ther proposed for the contrastive domain translation, which can
learn both specific and general feature representations more
effectively using domain-sharing layers and multimodal con-
trastive loss. Extensive experiments on two public multimodal
medical image datasets were conducted; the experimental
results demonstrated that the proposed Multi-ConDoS can
achieve superior medical image segmentation performances
using only a small number of annotations, which thus greatly
reduced the labeling workload of using intelligent medical
image segmentation systems in the real-world scenarios. The
effectiveness and necessity of all three advanced components
in the proposed Multi-ConDoS were also proved by ablation
studies.
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