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Abstract—Medical image segmentation is an important and
complex task in clinical practices, but the widely used U-Net
usually cannot achieve satisfactory performances in some clinical
challenging cases. Therefore, some advanced variants of U-
Net are proposed using multi-scale and attention mechanisms.
Different from the existing works where multi-scale and attention
are usually used independently, in this work, we integrate them
together and propose a collaborative attention guided multi-scale
feature fusion with enhanced convolution based U-Net (EC-CaM-
UNet) model for more accurate medical image segmentation,
where a novel collaborative attention guided multi-scale feature
fusion (CoAG-MuSFu) module is proposed to highlight important
(but small and unremarkable) multi-scale features and suppress
irrelevant ones in model learning. Specifically, CoAG-MuSF
uses a multi-dimensional collaborative attention (CoA) block to
estimate the local and global self-attention, which is then deeply
fused with the multi-scale feature maps generated by a multi-scale
(MuS) block to better highlight the important multi-scale features
and suppress the irrelevant ones. Furthermore, an additional
supervision path and enhanced convolution blocks are used to
enhance the deep model’s feature learning ability in both deep
and shallow features, respectively. Experimental results on three
public medical image datasets show that EC-CaM-UNet greatly
outperforms the state-of-the-art medical image segmentation
baselines. The codes will be released after acceptance.

Index Terms—Collaborative Attention, Multi-Scale Feature
Fusion Network, Medical Image Segmentation
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MEDICAL image segmentation is a fundamental problem
and complex task in clinical computer-aided diagno-

sis [43], [45], which aims to help medical staff treat patients
conveniently. Many deep-learning-based medical image seg-
mentation has been introduced in the literature for different
target images from computerized tomography (CT) [48]. How-
ever, due to lack of sufficient feature information compared
with big organ, segmentation for small organ (e.g. pancreas)
in the medical image have been a challenging task [37].

The fully convolutional networks (FCNs) are the first se-
mantic segmentation model trained end-to-end and pixels-
to-pixels [22]. Many FCNs-based researches have achieved
higher accuracy in medical image segmentation than the
traditional methods [26]. Then, U-Net [25] is proposed for
medical image segmentation. Like FCNs, U-Net is composed
of encoder and decoder, and skip connections is added to
remedy the information loss and high-order feature fusion.
Although U-Net has already achieved some great successes,
its segmentation performance for small target is still unsat-
isfactory. Therefore, some variant of U-Net was proposed.
Our review found that the improvements based on U-Net are
mainly focused on two aspects. On the one hand, it is reflected
in the design of adding multi-scale modules, and on the other
hand, the attention mechanism is introduced. As far as multi-
scale design is concerned, U-Net++ [18] is a representative
work. The U-Net++ implements dense connection realize
global multi-scale fetching, but dense connection introduces
complex features while adding invalid information(noise) that
increase the learning difficulty of the model. In addition, the
large increase of parameters need pruning operation and will
decrease the performance. For the study of introducing atten-
tion mechanism in U-Net, Attention U-Net [23] achieves high
performance medical image segmentation. Compared with U-
Net++, Attention U-Net realizes the fusion of context informa-
tion through convolution and weighting on skip connection to
a certain extent and improves semantic effectiveness, but it can
not make use of the relationship between objects or objects
in the global view, which is also very important for small
object segmentation in complex background. A lot of works
has proved that multi-scale network [4], [5], [37], [50] and
attention mechanism [9], [33] can improve the segmentation
effect of the model. Since the importance of multi-scale
features may also be different, an interesting idea is to integrate
attention mechanism with multi-scale networks to highlight
the important multi-scale features and suppress the irrelevant
ones, so as to enhance the model’s feature learning capability,
especially on those small but important features.
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Fig. 1: Medical image segmentation solutions that utilize
both attention and multi-scale mechanisms.

There have already existed some works that use both
attention and multi-scale mechanisms for image segmenta-
tions [10], [13], [20]. As shown in Fig. 1 (a), a MSF-ACSA
model is proposed in [10] to add additive channel–spatial
attention (ACSA) modules on the skip-connections of U-
Net and use multi-scale modules to achieve deep supervision
at the decoder. Differently, the MCDALNet model [13] (as
shown in Fig. 1 (b)) applies the multi-scale module on the
skip-connections and adds a dual attention in each layer
of the decoder. However, the attention modules and multi-
scale modules in these two works are used independently
and in series, which are thus unable to achieve the aim of
using attention modules to directly highlight the important
multi-scale features and suppress the irrelevant ones in model
learning. Furthermore, [20] proposes a dual-branch multi-scale
attention block to obtain the attention maps and multi-scale
feature maps simultaneously parallel (as shown in Fig. 1 (c));
however, the attention maps are simply added with the multi-
scale feature maps in [20] without any deep integration,
making the attention maps only have limited effect on the
importance of multi-scale features. Therefore, the need of a
work that can achieve deep integration of attention and multi-
scale mechanisms is still compelling.

Therefore, we propose a novel Collaborative Attention
Guided Multi-Scale Feature Fusion with Enhanced Convolu-
tion based U-Net (EC-CaM-UNet) model for more accurate
medical image segmentation. As shown in Fig. 1 (d), the most
innovative part of EC-CaM-UNet is to propose a Collaborative
Attention Guided Multi-Scale Feature Fusion (CoAG-MuSFu)
module that can deeply fuse the attention maps generated by
the attention module with the multi-scale feature maps gener-
ated by the multi-scale module using a 1x1 convolution block;
consequently, the attention information and multi-scale feature
information can be fused deeply and comprehensively to better
highlight important multi-scale features and suppress irrelevant
ones in model learning and achieve better medical image
segmentation performances than the existing works [10], [13],
[20] (as proved in our experiments). Specifically, CoAG-
MuSFu is added after the last layer of encoder and before
the first layer of decoder, and composed of two blocks,
Multi-Dimensional Collaborative Attention (CoA) block and
Atrous Spatial Pyramid Pooling Multi-Scale (MuS) block. The

proposed collaborative attention multi-scale fusion module,
CoAG-MuSFu, is different from the existing multi-scale mech-
anism [11], [14], which uses an attention mechanism to weight
the multi-scale features to highlight key multi-scale features
and suppress irrelevant ones. For the CoA block, we estimate
the importance of features in both the spatial and channel
dimensions. While some previous attention mechanisms focus
solely on spatial attention or channel attention, CoA integrates
both aspects to capture comprehensive feature dependencies.
This allows our model to attend to relevant spatial regions
as well as significant channel information, enhancing the
overall representation learning process. The spatial attention
in CoA is computed based on a self-attention approach [33],
leveraging local and global correlations between regions on
the feature map. This ensures accurate weight estimation by
considering both local context and global context, enabling
the model to better emphasize important spatial features and
suppress less relevant ones. Since the dependencies between
channels are estimated using the whole feature map, instead of
using pixel-wised self-attention, we adopt an one-dimensional
autoencoder in CoA for channel attention computation, which,
comparing to self-attention, has much lower computational
complexity. The resulting weight matrix is then fused by the
multi-scale feature map generated by MuS block to assign
the different multi-scale features with different weights, which
then highlights important multi-scale features, and depresses
the relevant ones. For MuS block, it takes the decoder’s feature
as the input, then extracts the multi-scale features by applying
dilated convolution with different dilation rates. The output of
the MuS block is to concatenate the feature maps of dilated
convolution from different scales, and reduce the channels to
the original number through 1 × 1 convolution.

Besides, to solve the problem of low effectiveness of shal-
low features, we add an Enhanced Convolution to the single
convolution kernel of U-Net to enhance the feature extraction
ability of shallow stage model. At the same time, the addition
of asymmetric enhanced convolution also achieves robustness
to flip image learning, which is beneficial to feature decoding
after shallow feature fusion. Finally, to ensure that the attention
module works better, we add extra supervision path.

Our work’s contributions can be summarised as follows:
• We identify the limitation of the existing medical image

segmentation models, and propose EC-CaM-UNet to in-
tegrate attention mechanism with multi-scale network for
better small organ segmentation.

• We propose a collaborative attention guided multi-scale
feature fusion (CoAG-MuSFu) module to deeply and
comprehensively fuse the attention information and multi-
scale feature information, so as to better highlight im-
portant multi-scale features and suppress irrelevant ones
in model learning. In addition, we further introduce an
additional supervision path and enhanced convolution
into the segmentation to enhance the deep model’s fea-
ture learning ability in both deep and shallow features,
respectively.

• Experimental results on three public medical image
datasets show that (i) EC-CaM-UNet greatly outperforms
the state-of-the-art medical image segmentation baselines,
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(ii) the components of CoAG-MuSFu are all effective and
essential for the model to achieve superior performances,
and (iii) CoA is much better than the state-of-the-art
attention mechanisms in identifying the important but less
remarkable segmentation features.

II. RELATED WORK

Medical Image Segmentation. Medical image segmentation
is to identify and delineate the targeted objects, e.g., organs
or lesions, in clinical images. It is essential for medical image
analysis to segment organs or tissues in low contrast and high
noise images [4]. This process needs a large number of ex-
perts, but computer-aided diagnosis and treatment can realize
the automatic analysis of complex medical images at a low
cost. Deep learning based methods have already been widely
applied in medical image segmentation tasks. FCN [22] is the
first end-to-end image segmentation model using convolutional
neural networks. To obtain more refined segmentation, U-
Net [25] is further proposed to upgrade FCN to a structure with
symmetrical contracting (downsampling) and expansive (up-
sampling) paths, and skip connections are also used in U-Net
to concatenate the deep and coarse features in the expansive
path with the shallow and fine features in the contracting path
for more accurate and detailed segmentation. U-Net is ar-
guably the most widely adopted deep model for medical image
segmentation; recent works witness the application of U-Net
in various small target segmentation tasks, e.g., segmenting
pancreas [23], [37], retinal vessel [13], tumors [41], [49],
etc. Despite achieving some successes, the performances of
the existing U-Net based deep models are still unsatisfactory,
especially for segmenting the small objects in medical images,
so we propose the EC-CaM-UNet in this work.

Attention Based Methods. With the success of the attention
mechanism [33] in the natural language processing (NLP) task,
researchers have started introducing this idea into computer
vision. Some researches [24] has proved that adding the
attention module to the model can effectively improve perfor-
mance. Hu et al. [15] propose a Squeeze and Excitation (SE)
attention mechanism, which collects the information hidden
in the channel-wise, fuzzes the spatial context by average
pooling, and redistributes the channels’ weight through a full
connected neural network. CBAM attention [39] extends SE
attention to utilize information in two dimensions, i.e., spatial
and channel dimensions, to estimate the importance weights
of features. However, the information extracted by CBAM
is too sparse in terms of the feature’s spatial dimension,
so the non-local self-attention mechanism [38] was adopted
in CoA Module to compute weights in spatial dimension.
We estimate the importance of a region by the sum of its
dependencies with all regions and further extend SE attention
to compute channel weights by adding a one-dimensional
encoder-decoder to expand the receptive field and reduce
computational complexity.

Similar to our work, some existing works have also inte-
grated attention mechanisms with deep segmentation models.
Attention U-Net [23] utilizes the feature map of an encoder
to strengthen the feature representation in the decoder and

obtains robust performance in segmenting the medical im-
age with shallow contrast. However, compared to our work,
Attention U-Net is only spatial-based and its attention maps
are obtained by simple convolution and lack the capability
in utilizing global information. RADC-Net [2] proposes a
residual attention-based convolutional neural network that
achieves good results in the direction of aerial scene classifica-
tion. ACG-attention [35] proposes an asymmetric cross-guided
attention network for actor and action video segmentation
from natural language query. CCNet [16] proposes to cross
attention repeatedly considering the row attention and column
attention to obtaining global information. MS2AP [3] proposes
a multi-scale stacked attention pooling mechanism for remote
sensing scene classification, which can improve the model’s
robustness and generalization performance. PCAN [19] first
extracts a set of prototypes from the spatiotemporal mem-
ory, and then retrieves rich information from past frames
using cross-attention. Recent advances of self-attention based
Transformer [34] has been demonstrated to be also effective
in semantic segmentation [8]; so SegFormer [40] combines
Transformer with a lightweight multi-layer perceptron (MLP)
decoder to generate multi-level features. However, these meth-
ods still demand high computational requirements. DA-Net [9]
is a multi-dimensional attention-based segmentation model.
Like CoA computes the feature dependencies in both channel
and spatial dimensions; however, DA-Net applies self-attention
in both dimensions while CoA adopts a one-dimensional auto
encoder for more efficient estimation of channel dependen-
cies. Different from these attention mechanisms, the proposed
collaborative attention (CoA) mechanism is used to assign
weights to multi-scale features to better highlight critical
multi-scale features and suppress irrelevant features in model
learning.

Multi-Scale Based Methods. After the End-to-End segmen-
tation method appeared, some researchers pay their attention
to the multi-scale module to boost model performance [11],
[18], [37], [44]. Spatial pyramid pooling (SPP) [14] proposes
effective pooling strategies which can get the same scale
output during any input scale. The different kernel size extract
the multi-scale feature at the same time. Also, using pyramid
pooling, the PSP-Net exploits the capability of global con-
text information by different-region-based context aggregation
through. To detect the target with different scales, Feature
Pyramid Network (FPN) [21] was proposed. Unlike the
above structure, the FPN will choose the optimal one among
multi-scale paths. Based on the above theory and practice,
some multi-scale structures are designed to be applied to
image segmentation. HR-Net [36] simultaneously connects
convolution streams from high-resolution to low-resolution,
while maintaining high-resolution representations throughout
the process. MSU-Net [28] employs multiple convolutional
sequences to extract more semantic features from images and
uses convolutional kernels with different receptive fields to
make the features more diversified. DeepLabV3+ [6] pro-
poses the atrous spatial pyramid pooling multi-scale (MuS)
module, which replaced pooing with three 3×3 convolutions
with different dilation rates and a 1×1 convolution, then
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concatenated the results with the input feature maps. A diverse
atrous rate can expand the receptive field and significantly
decrease the number of parameters. In the field of medical
image segmentation, CE-net [12] utilizes multi-scale dilated
convolution to extract rich feature representations, followed
by multi-scale pooling operations to extract more contextual
information. Unlike MuS, a local multi-scale model, U-Net++

is designed with a globally densely connected multi-scale
structure and supervises each scale to realize the multi-scale
feature selection. The above works process the multi-scale
pooling or convolution operations in parallel, then concatenate
every scale to the downstream task. However, not every scale
feature is valid, so stitching multiple multi-scale features
together is inefficient.

Methods Using Both Attention and Multi-Scale mecha-
nisms. There have already existed some works that use both
attention and multi-scale mechanisms for image segmenta-
tions [10], [13], [20]. Specifically, [10] proposes a MSF-
ACSA model to add additive channel–spatial attention (ACSA)
modules on the skip-connections of U-Net and use multi-
scale modules to achieve deep supervision at the decoder
of U-Net. Differently, the MCDALNet model in [13] applies
MCL modules on the skip-connections of U-Net to extract
multi-scale contextual information with adaptive receptive
fields, and add dual attention in each layer of the decoder.
However, the attention modules and multi-scale modules in
these two works are used independently and in series, which
are thus unable to achieve the aim of using attention modules
to directly highlight the important multi-scale features and
suppress the irrelevant ones in model learning. Similar to
our work, [20] proposes a dual-branch multi-scale attention
block to obtain the attention maps and multi-scale feature
maps in parallel; however, the attention maps are simply
added with the multi-scale feature maps in [20] without any
deep integration, making the attention maps only have limited
effect on the importance of multi-scale features. Different from
these existing works, the proposed CoAG-MuSFu module
uses a 1x1 convolution block to deeply fuse the attention
maps generated by the collaborative attention module with the
multi-scale feature maps generated by the multi-scale module,
which thus better highlights important multi-scale features and
suppresses irrelevant ones in model learning and achieves
better medical image segmentation performances than the
existing works [10], [13], [20] (as proved in our experiments).

Applications of Attention and Multi-Scale Based Meth-
ods in Practical Medical Image Segmentation. Many recent
studies have used the attention based [30]–[32] and multi-
scale based [29] segmentation methods in the practical medical
image segmentation tasks. For example, [20] proposes to
incorporate a dual-branch multi-scale attention module with
U-Net to segment lumbar spinal on MR images for better
diagnosis of lumbar spinal stenosis. Multi-dimensional self-
attention and diversely-connected multi-scale convolution are
proposed in [42] to enhance the lesion and organ segmentation
accuracy of kidney, pancreas, and liver on CT images. A multi-
scale contextual dual attention learning network is proposed in
[13] to achieve more accurate skin lesion and blood vessel seg-
mentations on dermoscopic and retinal images, respectively.

[10] proposes to segment colon polyps and skin lesions from
respectively endoscopy and ultrasound images using a multi-
scale fused network with additive channel–spatial attention. In
addition, several recent works have also incorporate attention
and multi-scale feature fusion modules into the segmentation
of breast tumors [30], [32], vascular walls [29], and carotid
lumen-intima and media-adventitia interfaces [31] from the
breast and carotid ultrasound images. Similar to these works,
our work is a generic medical image segmentation method,
which can not only be used in the segmentation tasks of CT
and MR images (as studied in our experiments) but also ap-
plicable in the clinical segmentation tasks using other medical
image modalities, e.g., dermoscopic, retinal, endoscopy, and
ultrasound images.

III. METHODOLOGY

Complex scenes in medical imaging, especially in abdom-
inal images, clustered many organs with similar density. The
effects of background noise such as bowel and septum make
organ segmentation difficult. As mentioned above, existing
neural networks can obtain local correlations but cannot
capture the relationships of long-range features; some multi-
scale fusion schemes can improve model performance, but
not all features at all scales are practical. Therefore, we
propose the EC-CaM-UNet network, which strives to deeply
and comprehensively fuse attention information and multi-
scale feature information, so as to better highlight important
multi-scale features and suppress irrelevant features.

Our method’s overall architecture is shown in Fig. 2, where
an overall diagram of the proposed EC-CaM-UNet is shown
in the middle area of Fig. 2, and the detailed diagram of the
new blocks, EC, CoA, MuS, and Side Output, are respectively
shown in the SubFig. 2 (a)-(e). In the Enhanced Convolution
Based Encoder, the inputs are first downsampled four times,
where the square convolution kernel 3 × 3 was replaced by
the 1× 3, 3× 1, and 3× 3 kernel (The enhanced convolution
is shown in Fig. 2 (a)) arranged in parallel. The asymmetrical
convolution effectively eliminates the imbalance distribution
of features learned by the square convolution kernel [7],
which will enhance the square convolution’s learning ability. In
medical imaging, the complex structures and details of images
are of great importance, and dilated convolution can better
capture this information. Then, the dense feature maps will
be fed into the CoAG-MuSFu Module, which is combined
with CoA Block and MuS Block, respectively. The CoA
Block evaluates feature dependencies in two dimensions in
different ways. The MuS Block extracts multi-scale feature
representation. Then the dependencies and multi-scale features
are fused by 1 × 1 convolution, which can assign weights
to different scale information. Finally, the CoAG-MuSFu’s
output as the input of Decoder with Side Output Module. In
medical image segmentation, the morphological and textural
differences among different tissues and organs are significant.
Therefore, the utilization and proper allocation of multiscale
information in feature extraction and fusion become partic-
ularly important. The design of the CoAG-MuSFu module
aims to address this issue by evaluating the feature dependency
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Fig. 2: Overview and details of the proposed EC-CaM-UNet, where the overall architecture of EC-CaM-UNet is shown in
the middle, the detailed diagram of Enhanced Convolution (EC) block used in the encoder of EC-CaM-UNet is shown in (a),
the detailed diagrams of Collaborative Attention (CoA) block (colored by yellow) and Multi-Scale (MuS) block (colored by

grey) used in the CoAG-MuSFu Module are shown in (b) and (c), and that of side output operation used in the decoder
EC-CaM-UNet is shown in (d).

relationships in different dimensions and extracting multiscale
feature representations. It can comprehensively utilize feature
information and allocate appropriate weights for each scale
by fusing different scale information, thus improving the
recognition and segmentation ability of various tissues and
organs in medical image segmentation tasks.

The depth of Encoder and Decoder is five, each layer
consists of two basic convolution layers (convolution layer,
batch normalization layer, and ReLU layer) cascaded; the skip-
connection structure between Encoder and Decoder remains
the same as U-Net. All the convolution operations were
followed by batch normalization, the phenomenon of gradient
dispersion will be improved [17], and the convergence speed
of the model will be accelerated.

A. Collaborative Attention Guided Multi-Scale Feature Fusion

The Collaborative Attention Guided Multi-Scale Feature
Fusion (CoAG-MuSFu) module can deeply and comprehen-
sively fuse the attention information and multi-scale feature
information, which consists of two parts; one is the Multi-
Dimensional Collaborative Attention Block, and the other is

the Multi-Scale Fusion Block. Now we will introduce these
two parts respectively.

1) Multi-Dimensional Collaborative Attention Block: We
will introduce the Multi-Dimensional Collaborative Attention
Block to model the long-range relationship in spatial and
get the adaptive importance among channels simultaneously.
After that, the two kinds of feature representations would
be utilized to form the final “attention” feature map. As
shown in Fig. 2(b), we design the Collaborative Attention
Block that combines of channel-correlation attention block
and spatial-correlation attention block. The high dimension
semantic feature from the encoder path of U-Net will be
put into the Collaborative Attention Block. By utilizing the
structure of the collaborative attention block, we are able to
obtain more accurate feature representations, which in turn
improves the ability to recognize target structures in medical
images. Additionally, our method can reduce errors and noise
during the segmentation process, and improve the accuracy
and stability of segmentation. The CoA Block is carried out
in two-step, it collects the long-range dependencies by adding
spatial-correlation attention block and generating an attention
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map denoted as S in ∈ RHW×HW :

S = fAS [F; η], (1)

where fAS represents the Channel-correlation Attention Block,
and η represents net parameters.

Simultaneously, the channel-correlation attention block con-
strained the channels information parallel:

Θ̂ = fAC [F;µ], (2)

F̂C
k = F̂k · Θ̂, (3)

where fAC represents the Spatial-correlation Attention Block,
µ represents net parameters. The Θ is the vector comes from
the channel-correlation attention block and Fk is the vector of
F along the channel direction.

Then, the feature maps FC weighted by channel-correlation
attention block were multiplied with matrix S. There are
better original spatial feature representations distributed in
raw feature map F. We obtain both dimensions’ attention
information from feature map F, ensuring no impact between
the two operations. Finally, the weighted feature map in the
channel dimension will be affected by the spatial attention map
to achieve the purpose of fusion.

FA = S⊙ FC + F, (4)

where FC is the channel-correlation attention block’s output,
S is the spatial-correlation attention map, ⊙ represents the
matrix multiplication.

In summary, we obtained channel-correlation information
and spatial information from the same input feature and
then realized the application of spatial information based
on channel weighting, the application of residual structure
made up for the lost global context. This is particularly
important for medical image segmentation tasks, as many
anatomical structures in medical images have similar shapes
and appearance features, requiring sensitive identification of
subtle feature differences.

The network with an encoder-decoder structure will take CT
or MR slices as input and extract features by 2D convolution.
In the encoder path, the number of channels increases with
the spatial resolution decreases. Each channel of the feature
map can represent one or several kinds of features and much
semantic information. According to the principle of 2D con-
volution, the convolutional kernel’s update does not directly
relate between different channels when the network propa-
gates forward, which is decided by back-propagation mainly.
Therefore, we build the channel-correlation attention block
to add a new connection between different channels. Adding
the channel-correlation attention block will give the different
weights for different channels according to the different impor-
tance and combine the relatively independent channel. We can
more accurately capture the features in medical images, such
as the shape and size of tumor regions. Compared to traditional
methods, our approach has better performance and accuracy in
medical image segmentation tasks, especially in more complex
scenarios where the lesion areas are small or the background
noise is high. By adding channel-wise correlation attention
blocks, we can more accurately capture the features in medical

images, such as the shape and size of tumor regions. Compared
to traditional methods, our approach has better performance
and accuracy in medical image segmentation tasks, especially
in more complex scenarios where the lesion areas are small
or the background noise is high. The structure of our channel-
correlation attention block is displayed in Fig. 3(b). The block
contains pooling, multiplication, and convolution operation. It
takes multi-channel feature maps as input and output feature
maps whose shape is the same as the input. First, we apply
the average pooling on the input feature maps F with the
shape of C×H×W in the channel dimension. Then, the pooling
operation got a vector θ ∈ RC×1 and fed it into the 1D
convolution operation. Every convolution is followed by batch
normalization and Relu, where the 1×3 and 1×7 kernel was
selected to mine the correlation between channels from the
θ(as shown in Fig. 3(b)).

On the one hand, 1×3 convolutions with stride=1 utilized
the adjacent channels’ features; on the other hand, 1×7
convolutions with stride=2 achieved the feature compression
while expanding the receptive field further. This downsam-
ple operation with different kernel sizes was able to obtain
the channel’s information from its neighbors and from afar
during the window sliding. Downsampling gathered the most
critical information; then, the deconvolution (interpolation)
would reassign it. We use Sigmoid as the last convolution
layer’s activation function, mapping the values between 0 and
1. Compared with the fully connected layer applied in the
SENet, the convolution squeezes the number of parameters
and models the relationship of the adjacent channel better.
Finally, assigning the corresponding weight to each channel.
The above process can be expressed as the following formula:

θk =
1

H ×W
·

H∑
i=1

W∑
j=1

Fi,j,k, (5)

Θ̂ = Conv({θ1, θ2, ..., θk−1, θk}), (6)

F
′

i,j,k = Θk · Fi,j,k, (7)

where Θk is the kth channel’s weight, and Fi,j,k is a element
in the feature map F.

As mentioned above, making the low contrast CT slices as
raw inputs brings the effect that the model will make some
mistakes while classifying the organ that is surrounded by
some similar density tissue. Under the medical images’ com-
plex background, it is crucial that comprehend the feature rep-
resentation accurately. Deep in the model, the high dimension
semantic information is plentiful. The original convolution
operation is limited at the size of the slice window because the
too large kernel will give a great memory pressure to the GPU.
Although pooling operation or bigger kernel size can expand
the receptive field, it is not easy that transfer information at
a distance in the feature map with convolution. To aggregate
the long-range dependency and gather information, we use the
self-attention method [33]. The spatial-attention block based
on the self-attention mechanism is shown in Fig. 3(a). We get
the relationship of one pixel with others in feature volume by
calculating similarity.
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Fig. 3: (a) and (b) are the details of Spatial-correlation Attention Block and Channel-correlation Attention Block respectively.

Also, taking F as input, we flattened the feature map for
each channel into a vector and concatenated these vectors to
get map E ∈ RC×HW . Then, the transposition of E and E is
multiplied to obtain attention map S. In the process of spatial
attention, we regard each channel vector as the feature ex-
pression of space points. Intuitively, we perform dimensional
compression through the channel vector dot product to obtain
the spatial relationship of each channel vector to each other.
In the last, apply a softmax layer to the column of S. The
operation can formula as follows,

E = reshape(F), (8)

Sij =
exp(ET ⊙E)ij∑HW

j=1 exp(ET ⊙E)ij
, (9)

where S ∈ RHW×HW , and ⊙ is matrix multiplication.
2) Multi-Scale Module: Atrous convolution is a powerful

tool that allows us to explicitly control the resolution of
features calculated by the depth convolution neural network
and adjust the field of view of the filter to capture multi-
scale information. The introduction of the dilated convolution
to control the field of view has shown promising; it can extract
multi-scale contextual details. Then, Chen et al. [5] proposed
MuS Fig. 2(c), which is a parallel atrous convolution block
to capture multiple-scale information simultaneously. MuS
captures the contextual information at different scales, and
multiple parallel atrous convolutions with varying rates in the
input feature map are fused. In our network, we make the MuS
module a bridge between the encoder and the decoder sections,
which will perform multi-scale fusion without reducing the
resolution. The proposed collaborative attention multi-scale
fusion module, CoAG-MuSFu, uses attention mechanism to
weight multi-scale features to highlight key features and sup-
press irrelevant features. Therefore, we use MuS to refine the
useful multi-scale information for the semantic segmentation
task. The process is shown in Fig. 2(c). The feature map E
extracted by the U-Net’s encoder is fed into the MuS module;
in the MuS module we follow the default setting, setting
dilate rate as 6, 12, 18. After the dilated convolution with
different dilatation rates, the obtained feature maps are spliced
together, and then the number of channels is restored by 1×1
convolution and fused with the output CoA module.

3) Deep Feature Fusion: The attention information gener-
ated by the CoA Block is deeply fused with the multi-scale
features generated by the MuS Block using a 1x1 convolution

module. The information at different scales is thus deeply
fused using 1x1 convolution with the constraint of attention
information, which thus better highlights the important multi-
scale features and suppresses the irrelevant ones. Formally,

F = Conv1×1(Concat(FA,FS)), (10)

where F is the feature after deep feature fusion, FA is the
attention map obtained by the CoA block, and FS is the multi-
scale features generated by the Mus block. By deeply fusing
the attention maps generated by the CoA block with the multi-
scale feature maps generated by the MuS block, the proposed
CoAG-MuSFu module can achieve more accurate medical
image segmentation than the existing works that also use both
attention and multi-scale mechanisms in clinical practices.

B. Decoder with Side Output

From the above, we would find that applying the MuS
and CoA modules increased the number of model parame-
ters. More parameters need to be learned with the increase
in complexity, making the model’s learning more difficult.
Generally speaking, it is unreasonable to complete the whole
model’s learning by giving it to a single loss function, and
our experiment confirmed it. A common feature in the almost
abdominal CT image; is that the target is small, and the
background is extensive. However, the information exposed
to the model by the label was the value of one or zero, and a
more extensive background led to the imbalance of categories.
Thus, we selected Dice-coefficient loss (LDice) as our model’s
primary loss function, which helps the model capture the tiny
object better. From the Table IV, we can find that Dice Loss
does not always work best, and the decrease of loss value
was not smooth while training the model. Nevertheless, the
research showed that dice loss might lead to gradient problems
in back propagation and make the training process unstable.
Therefore, we use Binary Cross-Entropy loss (LBCE) as a side
output path to ensure the correct learning of the Attention
module while providing a relatively stable gradient for the
model’s learning. Formally,

LDice = 1− 2ŷy

ŷ + y
, (11)

LBCE = −y log ŷ − (1− y) log(1− ŷ), (12)

LHybrid = LDice + LBCE, (13)
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where ŷ is the model’s prediction, and y is the corresponding
label. Here, the two losses are combined with the same weights
because our experiments prove that using weighted sum will
not have significant improvements but will bring expensive
additional time-cost for tuning the hyper-parameter. However,
the future users can still change this equation to the weighted
form if very accurate segmentation performances are needed.

IV. EXPERIMENT

A. Dataset

MSD (Medical Segmentation Decathlon Challenge) pro-
vides data on ten kinds of human organs, including the
pancreas data set. There are 281 cases of CT volume and
the corresponding label marked manually by specialists. The
spatial resolution of each case in this data set is 512 × 512,
and the number of slices is different from 37 to 750. 236
patients are divided from the total data for the training set, 40
cases for testing, and 5 cases for validation. We use the slice
and pancreas annotation to train and evaluate our method.

NIHC-TCIA (National Institutes of Health Center-The
C-ancer Imaging Archive) obtains 82 abdominal contrast-
enhanced 3D CT scans ( 70 seconds after intravenous contrast
injection in portal-venous) from 53 male and 27 female sub-
jects. The CT scans have resolutions of 512x512 pixels with
varying pixel sizes and slice thickness between 1.5-2.5 mm,
acquired on Philips and Siemens MDCT scanners. A medical
student manually performed slice-by-slice segmentation of the
pancreas as ground-truth. We randomly selected 57 cases from
82 cases as the training set data, 5 cases as a verification set,
and the remaining 20 cases as a test set to evaluate the model’s
performance.

KiTS19 is a kidney dataset that contains 210 cases’ image
and segmentation labels. The manual segmentation labels were
provided by medical students. The image, as well as labels in
this data set, were NIFT format with shape (the number of
slice, height, width), where the direction of the slice is an
axial view and the slice thicknesses range from 1mm to 5mm.
170 cases, 10 cases, 30 cases were split at random as the train
set, validation set, and test set. We use the slice and kidney
annotation to train and evaluate our method.

Cardiac [1], [27] is a publicly available medical imaging
dataset that consists of MRI scans from 20 cardiac patients, in-
cludes a total of 1,350 slices from 20 different cases, with each
slice sized at 320×320 pixels. All images have been annotated
by medical professionals, making them a valuable resource for
evaluating the performance and accuracy of automatic segmen-
tation algorithms. Preprocessing and enhancement techniques
are applied to the images to highlight the cardiac structures
effectively.

B. Baselines

We compared the MG-CoA module with five sota methods,
including (i) the original U-Net for medical image segmenta-
tion, (ii) a method using Attention Gate module for pancreas
segmentation and that is the state-of-the-art method, (iii) a

dual attention module that proposed for natural image seg-
mentation, FCN combined with which achieved state-of-the-
art on CityScape and VOC datasets, (iv) the original channel
attention and spatial attention module, (v) densely connected
U-Net.

1) U-Net. We can see from the Section I, the U-Net is a
very important structure in medical image segmentation.
Unlike the FCN method, the U-Net utilized the denser
long-skip-connection and feature concatenate, which
made the high and low-level semantic features integrated
fully. Like most researchers studied the medical image
segmentation, we selected U-Net as the baseline method.

2) Attention U-Net. Compare with the U-Net, [23] pro-
posed the concept of attention gate and combined with
the U-Net, which realized state-of-the-art in pancreas
segmentation task. The attention gate module was em-
bedded in each decoder path level, which made current
level feature maps as “signal” and one level lower
feature as “gate” information. Next, the “signal” and
“gate” were fed into the attention gate module to format
a weighted map. In the last, multiplying “signal” with a
weighted map and continue to the next level.

3) DA-Net. It uses the point-wise and channel-wise atten-
tion parallel, where the idea of self-attention is used. Dif-
ferent from our attention module, DA module weighted
the feature map in the dimension of the channel and
spatial respectively and then merged the feature map.

4) DeepLabV3+. The multi-scale module is proposed in the
series of deeplab. We use the MuS module as a bridge
between the encoder and decoder to achieve multi-
scale feature complementation. MuS is derived from the
deeplab series, which is why we choose it as the baseline
method.

5) UNet++. It is the state-of-the-art method in the field of
medical image segmentation, The dense connections en-
able the fusion of different depth networks and different
scale features, which is close to the idea of our work.

6) SE [15] and CBAM [39] Module. The principles of the
two methods are the same. Both of them applied the
pooling operation to catch the global information and
assigned by multiplication element wise.

7) HR-Net [36] is a network architecture that simul-
taneously connects convolutional streams from high-
resolution to low-resolution while maintaining high-
resolution representations throughout the process.

8) SegFormer [40] unifies Transformer with a lightweight
multilayer perceptron (MLP) decoders and is a semantic
segmentation framework that utilizes self-attention.

9) CE-Net [12] uses a contextual encoder network to cap-
ture more high-level information and preserve spatial
information for 2D medical image segmentation.

10) MSU-Net [28] is a multi-scale U-Net for medical image
segmentation, addressing the limitations of fixed recep-
tive field and unknown optimal network width of the
convolution kernels in U-Net.
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TABLE I: The performances of our method and the state-of-the-art baselines on four medical image segmentation datasets.

Method
DATASET

TCIA MSD KiTS Cardiac
DSC Sensitivity Precision DSC Sensitivity Precision DSC Sensitivity Precision DSC Sensitivity Precision

U-Net [25] 67.80 64.92 81.44 65.35 70.74 77.56 93.83 96.20 94.60 74.41 75.86 78.03
U-Net++ [15] 71.47 71.44 80.48 68.75 70.42 78.71 94.10 96.25 94.11 75.58 75.93 80.65

DeepLabV3+ [39] 68.08 62.86 80.74 69.02 71.21 73.13 94.54 93.81 96.01 78.26 77.05 79.50
Attention U-Net [23] 71.37 71.30 81.17 70.01 72.94 78.98 94.45 96.18 94.73 74.61 77.48 79.47

DA-Net [9] 69.17 67.70 80.97 70.77 72.70 78.37 94.57 96.10 94.79 77.82 73.45 82.75
HR-Net [36] 71.13 68.43 80.12 71.03 73.51 76.38 94.66 95.53 96.72 78.43 77.55 79.33

SegFormer [40] 69.17 67.70 80.97 70.77 72.70 78.37 94.57 96.10 95.30 77.27 72.88 82.23
CE-Net [12] 71.75 69.74 79.29 69.22 70.29 77.97 94.08 94.02 96.78 78.19 78.64 82.13

MSU-Net [28] 70.34 69.38 79.72 70.21 74.50 76.50 94.71 96.25 95.34 75.62 75.18 80.75
Our 72.64 72.07 82.34 71.68 74.96 79.06 95.02 96.28 95.29 79.32 80.31 82.51

C. Implementation Details

In the experiment, a grayscale image with a single channel
was fed into our network, and the image size is 512×512.
When only a few training samples are available, data ar-
gumentation is the key to imparting the required invariance
and robustness to the network. The probability of a random
horizontal flip was set to 0.5. Randomly rotate images with
rotate factor in [-10, 10]. Simultaneously, random gaussian
blur is applied to extend data; fifty percent of each image
is likely to be processed by Gaussian filtering. It is worth
noting that the labeled data is processed simultaneously with
the training data. The batch size was set to 4. We optimized our
model with Adam optimizer. The initial learning rate was set to
0.00001, and the cosine annealing is used to adjust the learning
rate. Weight decay was set to 0.0001 on the MSD dataset and
KiTS dataset and 0.0002 on the TCIA and Cardiac dataset.
We train the models 150 epochs and select the parameters
with the best results on the validation set as the final model.
We use the PyTorch tools to build our model and trained
with two GTX2080Ti GPUs; thus, the Synchronized batch
normalization is used. In our experiments, we do not use any
pre-training models, i.e., all models are trained from scratch
using the same initialization method and hyperparameters to
ensure a fair comparison.

D. Evaluation Metrics

We used Dice-coefficient, precision and sensitivity as the
evaluation indicators. The Dice is used to evaluate the overlap
ratio between the predicted target and the ground truth, which
is the most important index of medical image segmentation.
The sensitivity shows that how many positive examples in the
sample are predicted correctly. We evaluate the performance
of the model on CT slice.

Precision =
TP

TP + FP
(14)

Sensitivity =
TP

TP + FN
(15)

DSC =
2 ∗ TP

2TP + FP + FN
(16)

where TP is the number of positive pixels that are correctly
classified in the segmentation results; FP , false positive, is

the number of negative pixels that are incorrectly classified as
positive pixels; FN , false negative, is the number of positive
pixels that are incorrectly classified as negative pixels.

E. Main Results

According to the experiment results, we made a quantitative
analysis. As shown in Table I, we can see that our proposed
method proposed performed best on the four datasets. Com-
pared to U-Net, our method showed an average performance
improvement of 5.58% on both pancreas datasets (i.e., TCIA
and MSD datasets). Compared with Attention U-Net, the DSC
of our method is improved by about 1.28% on both pancreas
datasets. Meanwhile, compared with the DA-Net, our method
achieved a 2% performance improvement on TCIA and MSD
datasets. Compared with SegFormer, our method achieves an
average performance improvement of 3.47% on the TCIA
dataset and 1.75% on the Cardiac dataset. Compared with
MSU-Net, the DSC of our method improves by about 3.4% on
the Cardiac dataset. Meanwhile, there is a 0.89% performance
improvement on the TCIA dataset compared to CE-Net.

In summary, the results in Table I can prove that the pro-
posed CoAG-MuSFu has achieved better performances than
the state-of-the-art baselins in medical image segmentation
tasks, and its superior performance is because of the following
reasons: 1) compared with single multi-scale information
extraction, we combine multi-scale information with extensive
semantic information extracted by attention module, which can
achieve more effective feature modeling; 2) compared with
traditional pure convolutional attention information, CoAG-
MuSFu gathers complementary information from adjacent
features to generate feature reorganization for content per-
ception, and applies channel weighting to enhance semantic
consistency.

Furthermore, the visualized results in Fig. 4 show that
our method is superior to the SOTA baselines in terms of
accuracy and target morphology capture performance, which
benefits from reasonable attention combination and multi-
scale morphology capture module. Due to the compression of
adjacent organs or other reasons, the CT slices in the 3rd and
4th columns of Fig. 4 show the target discontinuity. When
other models incorrectly segment the target into a whole,
our method can recognize this situation more accurately and
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Fig. 4: Visualized segmentation results of our work and the state-of-the-art baselines.

TABLE II: Ablation studies on four datasets, where CC is the Channel-Correlation attention module, SC is
Spatial-Correlation attention module, MuS is atrous spatial pyramid polling Multi-Scale (MuS) module, EC is the Enhanced

Convolution block, and DWS is the use of decoder with side output to achieve deep supervision.

Method DATASET
Module TCIA MSD KiTS Cardiac

CC SC MuS EC DWS DSC Sens PPV DSC Sens PPV DSC Sens PPV DSC Sens PPV

U-Net

67.80 64.92 81.44 65.35 70.74 77.56 93.83 96.20 94.60 74.41 75.86 78.03
✓ 68.05 65.92 81.07 69.67 72.26 78.03 94.49 96.13 94.86 75.79 77.95 79.00

✓ 68.71 67.14 82.12 67.92 72.36 76.73 94.19 95.99 94.38 77.31 80.04 77.97
✓ 68.14 67.23 80.50 69.68 74.50 75.94 93.42 95.67 93.74 76.73 79.07 77.96

✓ 70.70 67.23 80.51 70.22 74.11 78.71 94.35 96.10 94.59 77.63 79.72 80.19
✓ 68.83 67.03 80.15 69.32 73.11 77.76 94.12 96.05 93.94 76.85 78.06 80.44

✓ ✓ 69.58 69.24 81.65 70.21 74.50 76.50 94.71 95.34 94.25 77.52 78.36 80.83
✓ ✓ ✓ 71.45 69.23 80.14 70.28 73.32 77.29 93.80 94.06 93.10 78.67 79.32 80.53
✓ ✓ ✓ ✓ 71.65 71.98 80.58 71.06 73.65 77.36 94.90 96.19 95.14 78.89 79.85 82.24

Ours ✓ ✓ ✓ ✓ ✓ 72.64 72.07 82.34 71.68 74.96 79.06 95.02 96.28 95.29 79.32 80.31 82.51

segment it with high precision. In summary, these results
further demonstrate that the channel dependencies and long-
range spatial information are essential to model the feature
representation in medical image segmentation.

F. Ablation Study
We further investigate the effectiveness and necessity of

the proposed modules of EC-CaM-UNet by ablation stud-

ies. Specifically, there are five improved components in the
proposed EC-CaM-UNet: (i) Channel-Correlation attention
module (Abbreviated as CC) and Spatial-Correlation attention
module (Abbreviated as SC) are used to respectively obtain
spatial and channel correlation attention information, which
integrate together will result in the multi-dimensional Collab-
orative Attention (CoA) Block; (ii) Atrous Spatial Pyramid
Pooling Multi-Scale (abbreviated as MuS) Block is used to
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obtain multi-scale features, which can be combined with CoA
block to obtain the proposed CoAG-MuSFu module; (iii) We
also introduce Enhanced Convolution (abbreviated as EC)
block in the encoder and improve the decoder with side output
based deep supervision (abbreviated as DWS) to enhance the
feature learning capability of EC-CaM-UNet. The results of
ablation studies are shown in Table II.

1) Effectiveness of Using the Proposed Modules Indepen-
dently: We first add the five proposed modules, CC, SC, MuS,
EC, and DWS, one by one to U-Net, and the results are shown
in the 2nd, 3rd, 4th, 5th, and 6th lines of Table II, respectively.
By comparing the results of these five intermediate models
with those of U-Net, we can find that these five proposed
modules all improve the performances of U-Net in terms
of all metrics on all four datasets. This thus demonstrates
the effectiveness of using these modules in medical image
segmentation tasks.

2) Effectiveness of Collaborative Attention Guided Multi-
Scale Feature Fusion (CoAG-MuSFu): Furthermore, we inte-
grate CC and SC blocks to obtain an intermediate model with
multi-dimensional Collaborative Attention (CoA) Block, and
further integrate CoA with MuS to obtain another interme-
diate model with Collaborative Attention Guided Multi-Scale
Feature Fusion (CoAG-MuSFu) module; the results of these
two intermediate models are shown in the 7th and 8th lines
of Table II. By comparing the results of U-Net+CoAG-MuSFu
(8th line) with those of U-Net+CoA (7th line) and U-Net+MuS
(4th line), we can find that U-Net+CoAG-MuSFu constantly
outperforms U-Net+CoA and U-Net+MuS in all cases. This
thus proves that by using CoA to assign different importance
weights to multi-scale features generated in MuS, the proposed
CoAG-MuSFu can better highlight important multi-scale fea-
tures and suppress irrelevant ones to achieve better feature
learning, and thus demonstrates our argument that fusing the
attention mechanism with multi-scale mechanism (as in the
proposed CoAG-MuSFu module) will achieve much better
medical image segmentation performances than using them
independently (as in the existing attention and/or multi-scale
based works).

3) Effectiveness of Enhanced Convolution and Decoder
with Side Output: Finally, we incorporate the Enhanced
Convolution (EC) block into the intermediate model U-
Net+CoAG-MuSFu, and then further add side outputs into
the model’s decoder (i.e., resulting in the proposed EC-CaM-
UNet); the results are shown in the last two lines of Table II.
By comparing these results with those of U-Net+CoAG-
MuSFu (8th line), we can find that the segmentation perfor-
mances gradually increase with the addition of EC and DWS
blocks. Therefore, this proves that integrating EC and DWS
blocks with CoAG-MuSFu is also beneficial and essential for
the proposed EC-CaM-UNet to achieve the superior medical
image segmentation performances.

G. Additional Experiments

1) Different Ways of Using Attention and Multi-Scale Mod-
ules: As introduced in Introduction, the most innovative part
of EC-CaM-UNet is to propose a CoAG-MuSFu module that

TABLE III: Segmentation performances of different ways of
using the attention module and the multi-scale module.

Dataset Different Usage Ways Dice%

TCIA
CoA → MuS [10], [13] 69.58

CoA+MuS [20] 70.23
Ours 72.64

MSD
CoA → MuS [10], [13] 70.91

CoA+MuS [20] 71.24
Ours 71.68

KiTS
CoA → MuS [10], [13] 94.64

CoA+MuS [20] 94.74
Ours 95.02

Cardiac
CoA → MuS [10], [13] 77.19

CoA+MuS [20] 77.83
Ours 79.32

TABLE IV: Training U-Net with different loss functions.

Dataset Loss Dice%

TCIA

LDice 67.80
LBCE 65.77

LDice+LBCE 68.02

MSD

LDice 65.35
LBCE 65.85

LDice+LBCE 66.47

KiTS

LDice 93.83
LBCE 93.66

LDice+LBCE 93.89

Cardiac

LDice 74.41
LBCE 73.13

LDice+LBCE 75.03

can deeply fuse the attention maps generated by the attention
module with the multi-scale feature maps generated by the
multi-scale module using a 1x1 convolution block; therefore,
we conduct additional experiments to prove that combining the
attention module and multi-scale module in the proposed deep
fusion way is more effective than using them independently in
a series way as in [10], [13] or obtaining them simultaneously
and then simply adding them together as in [20].

The results in Table III shows the following observations:
(i) the way of obtaining the attention maps and the multi-
scale feature maps in parallel and adding them together as
in [20] (denoted CoA +MuS) is better than using attention
module and multi-scale module independently in a series way
as in [10], [13] (denoted CoA → MuS); (ii) our proposed way
of deeply fuse them using a 1x1 convolution (denoted Ours)
always achieves much better segmentation performances than
another two ways. Consequently, these findings well demon-
strate the significance and contribution of the proposed CoAG-
MuSFu module in finding a new way of using the attention
and the multi-scale modules to achieve better performance in
medical image segmentation tasks.

2) Comparison with Different Loss Function: To justify the
need of using a hybrid learning loss, we conduct experimental
studies to compare the segmentation performances of training
U-Net with different loss functions. As shown in Table IV,
using solely LDice or LBCE can not yield optimal performance;
this may be because solely relying on LDice may result in
gradient vanishing, and using only LBCE may be sensitive
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Fig. 5: The effect of using different weights in the hybrid
loss function.

to noise samples. Therefore, we use a hybrid loss function,
including both LBCE and LDice losses, to help model extract
more informative and representative features and obtain better
medical image segmentation results.

3) Combining Losses in a Weighted Way: We conduct
additional experiments to investigate the effect of combing the
losses in a weighted way. Specifically, we re-define the hybrid
loss as follows:

LHybrid = α× LDice + (1− α)× LBCE, (17)

where α is the weight hyper-parameter.
To investigate the sensitivity of α on the results, we con-

ducted various experiments on the TCIA dataset, varying α
from 0.1 to 0.9. As shown in Fig. 5, the performance of
the proposed method is relatively stable (with very limited
fluctuations) with the changes of α. For instance, the best
results are achieved when α reaches 0.3, with a Dice value
of 73.14%, which are only slightly higher than the results
obtained when α = 0.5 (i.e., the case of adding the losses
directly without weights)). Therefore, in this work, the hybrid
loss function is constructed by directly adding the losses
with the same weight to avoid the very expensive additional
time-cost of tuning the hyper-parameter α. However, one can
still use the weighted form if very accurate segmentation
performances are needed.

4) Comparison of Attention Mechanisms: We conduct addi-
tional experiments to further investigate the effectiveness of the
proposed Collaborative Attention (CoA), the two components
of CoA, i.e., spatial-correlation (SC) and channel-correlation
(CC) attention, and the state-of-the-art attention modules,
SE [15] and CBAM [39], where all attention modules are
integrated into the end of encoder in U-Net (i.e., the same
as in our work). As shown in Table V, using CC attention or
SC attention can achieve generally better medical image seg-
mentation performance than using the exciting SE and CBAM
attentions. Furthermore, by integrating CC with SC, the pro-
posed CoA achieves the best results, which thus proves the
effectiveness of the proposed CoA in our work. In Fig. 6, we
further visually analyze the heatmaps of U-Net+CoA (ours),
Attention U-Net, U-Net+SE, DA-Net, and U-Net+CBAM (as
the attention of SegFormer is achieved using Transformer
instead of U-Net, we omit it here to keep fair comparison).

By comparing the resulting activated maps of these attention
methods with ground-truth (GT), we can find that our proposed
CoA can capture salient features and highlight relevant target
regions with higher intensity in the heatmap than the baselines
do. This is consistent with our goal of accurately identifying
and segmenting objects of interest in medical images. The
success of our proposed attention module is mainly because of
the synergistic fusion of attention mechanisms and multi-scale
mechanisms; this fusion empowers our model to effectively
exploit both local and global information, adaptively allocate
attention, and accurately delineate the regions of interest. The
clear distinction and localization of regions of interest in the
heatmap reaffirm the effectiveness of our method in accurately
highlighting important structures and aiding in the precise
segmentation process.

V. DISCUSSION AND FUTURE WORK

This section will introduce the main differences between
our work and the existing research methods, the social impact
of the proposed method, and the limitations and future works.

Differences between our work and the existing research
methods. The main contribution is to propose a collaborative
attention multi-scale fusion module, CoAG-MuSFu, which is
different from the existing multi-scale mechanism [11], [14]
by using an attention mechanism to weight the multi-scale
features to highlight key multi-scale features and suppress
irrelevant ones. Our method is based on both global and local
multi-scale. In this way, the local-to-global morphological
feature was efficiently integrated for comprehensive characteri-
zation of the pancreas. Additionally, we embedded an attention
mechanism module to obtain enhanced connections between
feature channels and spatial features. Our proposed attention
module is also different from existing module [9], [15], [23].
In the substructure of channel attention, we learned from SE-
Net’s structure and designed a one-dimension encoder-decoder
by 1D convolution to compress and distribute data from
different channels while reducing the amount of computation.
We extracted the two kinds of attention information separately
and applied them in a cascade way. By the fusion of two kinds
of attention mechanisms, we not only reduce the redundant
convolution caused by parallel feature concatenation but also
ensure that the extracted attention information is the original
feature without weighting [39].

Social impact. Our work has the potential to make a signif-
icant impact on clinical practices by improving the accuracy
and efficiency of medical image segmentation, which is a
critical step in the diagnosis and treatment of various medical
conditions. For instance, the segmentation accuracy for kidney
organs has reached a high level, enabling the direct utilization
of the proposed model in clinical applications. The segmented
results can be directly provided to physicians for diagnosis
and treatment, significantly reducing the cost associated with
organ and lesion region assessment and analysis in clinical
settings.

Limitations and future works. Despite demonstrating
better performances in medical image segmentation tasks, we
observed in our experiments that the improvements of the
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TABLE V: The segmentation performances of the proposed CoA, its two components (i.e., CC and SC blocks), and the
existing SE and CBAM attention modules, where all attention modules are integrated into the end of encoder in U-Net.

Method
DATASET

TCIA MSD KiTS Cardiac
DSC Sensitivity Precision DSC Sens Precision DSC Sens Precision DSC Sens Precision

U-Net+SE [15] 68.00 66.82 79.81 66.46 72.61 71.96 94.08 96.71 93.73 75.22 78.36 78.09
U-Net+CBAM [39] 68.16 67.70 78.98 67.49 69.41 72.90 94.19 96.45 93.82 75.52 80.14 75.67

U-Net+CC 68.05 65.92 81.07 69.67 72.26 75.80 94.49 96.13 94.86 76.06 78.10 79.01
U-Net+SC 68.71 67.14 82.12 67.92 72.36 76.73 94.19 95.99 94.38 76.27 80.94 76.76

U-Net+CoA 70.24 68.68 82.10 70.15 73.83 76.24 94.97 96.55 95.41 79.02 80.97 80.74

Input GT Ours SE CBAMAttention U-Net DA-Net

Fig. 6: Visualized attention activate maps on the TCIA dataset, where images from left to right are input images, ground
truths, and activate maps of U-Net+CoA (Ours), Attention U-Net, U-Net+SE, DA-Net, and U-Net+CBAM, respectively, and

the level of activation gradually increases from blue to red.

proposed segmentation model’s segmentation performances on
MSD and TCIA datasets are not as significant as those on
KiTS19 and Cardiac datasets; this may be because, compared
to the pancreas, the shapes of kidneys (in KiTS dataset)
and hearts (in Cardiac dataset) are relatively regular, and the
contrast of its images is relatively high, so the advantages
of using our methods may be limited; therefore, it is an
interesting future work to discover the solution to further
enhance the performances on this kind of datasets [46], [47].
In addition, the proposed method is currently designed to
process 2D medical images, so it is also interesting to further
extend the proposed model to make it capable of processing
3D medical images in the future works; a potential direction
of achieving this may further enhance the dimension of the
attention mechanism to make it able to model the dependencies
between 3D volumes.

VI. CONCLUSION

In this study, we proposed a CoAG-MuSFu Module to
construct the weighted feature maps and make our network pay
more attention to the pancreas that is small and with various
shapes. We select two public pancreas datasets and a kidney
dataset to evaluate the model’s effectiveness. On the challeng-
ing pancreas datasets, our method outperformed the current
SOTA models, and realized the comparable performance on
the easier task of kidney segmentation. This also confirms that
our model has a targeted improvement in the segmentation of
the pancreas or organs with the related characteristics.
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