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Abstract—Temporal convolution networks (TCNs) are recently
proposed to be used in the short-term load forecasting (STLF)
tasks in modern smart grids, however, TCNs have two short-
comings, i.e., redundant convolutional operation and equal input
importance problems. Therefore, we propose a novel TCN-based
backbone model, called PhaCIA-TCNs, to achieve a more accu-
rate short-term load forecasting, where parallel hybrid activated
convolution (PhaC) and input attention (IA) are proposed to re-
solve the above problems, respectively. Specifically, IA is proposed
to highlight important input elements while depressing irrelevant
ones, which thus rises the model’s forecasting accuracies but
also brings additional time-cost; then PhaC is further proposed
to remedy the efficiency problem and to further enhance the
forecasting accuracies by shortening the convolutional learning
path to overcome the redundant convolutional operation problem.
Extensive experimental results show that (i) PhaCIA-TCNs sig-
nificantly outperform all state-of-the-art RNN-based and TCNs-
based baselines in forecasting-error-based evaluation metrics on
all datasets; (ii) ablation studies show that PhaC and IA are both
effective and essential for PhaCIA-TCN to achieve the superior
forecasting accuracies in STLF tasks, and by integrating IA and
PhaC with TCN, the proposed PhaCIA-TCN not only greatly
outperforms TCN in forecasting accuracies but also keeps similar
(sometimes even better) learning efficiency.

Index Terms—Short-Term Load Forecasting, Temporal Con-
volution Networks, Input Attention, Hybrid Convolution

I. INTRODUCTION

SMART grid can use information and communication
technology to adjust the production, transmission, and

distribution of electricity to save energy and enhance the
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reliability of the power system [3]. Power load forecasting
is an essential module in smart grids, which uses historical
load information to predict the future load and to help power
system planning [13]. Short-term load forecasting (STLF) is
an important load forecasting task, which aims to predict the
power load of the grid in the near future, e.g., load over
the following hours, days, or weeks, to guarantee that the
generated energy always matches the power load demand
precisely [7].

In recent years, deep learning techniques have been widely
applied in short-term load forecasting tasks [13]. Recurrent
neural networks (RNNs), which utilize a cyclic structure to
learn sequential features based on historical information, are
the most widely adopted deep learning methods for load
forecasting [19]. However, vanilla RNNs have the inherent
shortcomings of gradient explosion and vanishing, which
greatly restricts their practical performance. Consequently,
long short-term memory (LSTM) networks [9] are further
proposed to overcome this problem by using gate mechanisms
to capture long-term dependencies, which has also been ap-
plied in STLF [12]. Nevertheless, the structure of LSTMs is
relatively complex with a large number of parameters, which
thus makes the model difficult to learn.

Therefore, gated recurrent unit (GRU) networks [2] have
further been proposed to simplify LSTMs by combining the
input and forget gates into a single update, which have been
proved to achieve better prediction accuracies than LSTMs in
the tasks of STLF [4]. Furthermore, bidirectional models [17],
e.g., bidirectional RNNs (Bi-RNNs), bidirectional LSTMs (Bi-
LSTMs), and bidirectional GRUs (Bi-GRUs), that consider not
only historical but also future information, have also been ap-
plied to STLF and achieved state-of-the-art performances [20].

Despite achieving some great successes, the performances
of RNNs and their advanced variants in STLF tasks are still
unsatisfactory. This is because their inherent cyclic structure
makes them have to learn non-linear relationships between
elements of sequences in a lengthy and unbalanced way [6].
Specifically, although RNN-based models are capable of utiliz-
ing long-term historical information for sequential prediction,
the amount of non-linear processing for different elements in
a given sequence is different, e.g., the first element is trans-
formed many times (over-processed) while the last element
is processed only once (under-processed). So, this unbalanced
non-linearity problem inevitably limits the learning capability
of RNN-based models for historical information, and thus
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weakens their forecasting performance.
Therefore, a convolution-based sequential learning model,

temporal convolution networks (TCNs), has recently been
proposed to remedy this problem, where a succession of
dilated casual convolution layers are used to learn non-linear
temporal relationships between elements in a shorter and
balanced way [1]. Specifically, stacked casual convolution
operations make all elements be processed by the same number
of non-linearities, and the dilated convolution operations are
used to extend the receptive field and ensure that the model can
learn long-term sequential relationships by a shorter path [5].
Despite having been applied in many sequential prediction
tasks [8], there exist only a limited number of research works
using TCNs for STLF [26], where the existing TCNs are di-
rectly used without any improvement. However, TCNs are not
flawless: (i) redundant convolutional operation problem:
each layer of TCNs consists of two consecutive convolutional
operations, which improve the model’s learning capability
but also inevitably increase the path of backpropagation and
the time-cost of each learning epoch; and (ii) equal input
importance problem: the same number of non-linearities
make TCNs treat all input elements equally, however, some
elements actually contain more important information than
others, e.g., elements at peaks or valleys of a load sequence.

Consequently, in this work, we propose a new TCN-based
backbone model, called PhaCIA-TCN, to replace the exist-
ing TCNs models and achieve a more accurate STLF. Two
innovative improvements, namely, parallel hybrid activated
convolution (PhaC) and input attention (IA), respectively, are
proposed to resolve the above shortcomings of the existing
TCNs-based models. Specifically, inspired by the attention
mechanism [25], the first contribution of PhaCIA-TCN is
to develop a novel input attention (IA) module to assign
importance weights to elements of the input load sequences.
Specifically, the weights are computed in IA using one linear
and two non-linear fully-connected layers to estimate self-
dependencies between the elements of the input sequences,
which thus highlights the elements that are important for STLF
tasks and suppresses the inessential ones. Our experiments
demonstrate that IA can not only be applied to TCN-based
models to help them achieve a superior STLF performance, but
it can also be easily incorporated with all existing RNN-based
deep models to greatly enhance their forecasting accuracies.
This thus proves the effectiveness, applicability, and portability
of IA in STLF.

However, although the input attention module can greatly
rise the forecasting accuracies, due to additional attention
operations, it will inevitably bring additional computational
costs and thus decrease the learning efficiency of the forecast-
ing model. Consequently, parallel hybrid activated convolution
(PhaC) modules are further proposed to replace the original
residual blocks (which contain two consecutive convolution
operations) in the existing TCNs to remedy this efficiency
problem and further increase the model’s forecasting accu-
racies. Specifically, PhaC consists of solely a dilated causal
convolution operation, which greatly reduces the model’s
convolution depth and learning time-cost; then, two different
parallel-arranged non-linear activation operations are used to

avoid the decline of learning ability caused by reducing
convolution operations. Our experiments show that using PhaC
not only decreases the TCN model’s convergence time but also
further increases the model’s forecasting accuracy in STLF
tasks. Consequently, by integrating the proposed IA and PhaC
modules with TCN, the proposed PhaCIA-TCN will be guar-
anteed to greatly outperform TCN in forecasting accuracies
(because both modules boost the forecasting accuracies), and
keep similar (sometimes even better) learning efficiency as
TCN (because IA introduces additional time-costs but PhaC
remedies it, the two modules complement each other, making
the learning efficiency remains relatively stable).

The contributions of this paper are summarized as follows:
• We identify existing shortcomings of RNN-based and

TCN-based STLF models, and propose a novel model,
called PhaCIA-TCN, to remedy these problems and
achieve a more accurate power load forecasting on three
public datasets. To our knowledge, PhaCIA-TCN is the
first work that optimizes the structure of TCNs so as to
obtain a better TCN-based backbone model for sequential
learning and forecasting tasks (including but not limited
to STLF).

• A highly applicable and portable attention mechanism,
input attention (IA), is first proposed to assign impor-
tance weights to elements of input sequences, which
thus resolves the equal input importance problem and
helps STLF models better utilize elements with important
information in the learning process. Then, to remedy the
additional computational costs of IA, a parallel hybrid
activated convolution (PhaC) module is further proposed
to shorten the convolutional learning path, which can
decrease the time-cost of TCN-based models and further
enhance the forecasting accuracies by overcoming the
redundant convolutional operation problem.

• We conducted extensive experiments on three public
power load datasets, and the results show that (i) PhaCIA-
TCN significantly outperforms the state-of-the-art RNN-
based and TCNs-based STLF baselines in various STLF
tasks in terms of both evaluation metrics, (ii) ablation
studies show that the proposed two improvement mod-
ules, PhaC and IA, are both effective and essential for
PhaCIA-TCN to achieve the superior forecasting accu-
racies in STLF tasks, and by integrating IA and PhaC
with TCN, the proposed PhaCIA-TCN not only greatly
outperforms TCN in forecasting accuracies but also keeps
similar (sometimes even better) learning efficiency.

The rest of this paper is organized as follows. Section II
reviews the related works, and PhaCIA-TCN is introduced in
Section III. Section IV presents the experimental studies and
evaluates the results. Section V contains some conclusions and
potential future works.

II. RELATED WORK

RNN-Based Models for STLF. RNN-based models are the
most widely used deep-learning-based methods for STLF. Shi
et al. propose a novel pooling-based deep RNN for STLF to
learn the high volatility and uncertainty of load profiles to
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Fig. 1: Overall Structure of the existing TCNs and the proposed PhaCIA-TCNs. Orange circles represent the nodes of TCN and black
arrows represent the information processing modules (i.e., residual block for classic TCN and parallel hybrid activated convolution (PhaC)
block for the proposed PhaCIA-TCN) between adjacent layer nodes; in addition, blue circles and red arrows are the same things as orange

circles and blue arrows, and their different colors are used to highlight a processing procedure example of dilated convolution between
different layers with dilated sizes d = 1, 2, 4.

predict short-term household loads in Ireland [19]. Kong et
al. use LSTM for short-term residential load forecasting in
Australia to tackle the high volatility and uncertainty issue in
load profiles and report very reliable and robust results [12]. A
feature-selection-based empirical-model-decomposition GRU
is proposed in [4] to achieve a good STLF accuracy in
three American datasets and a Chinese power load dataset [4].
Liu et al. propose a combined model based on Bi-directional
for STLF, and the experiments on a Chinese power load
dataset exhibit accurate forecasting results [15]. However, the
existing RNN-based models all suffer from the unbalanced
non-linearity problem, so in this work, we use TCNs as the
backbone model for the prediction of sequential data.

TCN-Based Models for STLF. Although TCNs have been
widely applied in many sequential prediction tasks, there
exists only a limited number of works that use TCNs for
STLF tasks. A MTCN is proposed in [26] to learn both
nonlinear feature and time series characteristics of load data,
where a multi-temporal-spatial-scale method is used for data
preprocessing to reduce the data noise and enhance the time
series characteristics. Wang et al. integrate TCNs with a light
gradient boosting machine (lightGBM) to achieve STLF for
industrial customers, where TCNs are used to extract hidden
features and long-term temporal relationships, and lightGBM
is used for result forecasting in power load sequences from
China, Australia and Ireland [22]. However, all the existing
TCN-based STLF models use vanilla TCNs directly without
any structure optimization; as identified above, vanilla TCNs
also encounter two shortcomings: redundant convolutional
operations and equal input importance. So, parallel hybrid
activated convolution (PhaC) and input attention (IA) modules,
respectively, are proposed in PhaCIA-TCN to resolve these
shortcomings. To our knowledge, PhaCIA-TCN is the first
TCN-based STLF work to optimize the structure of TCNs.

Attention Mechanism in STLF Works. The attention mech-
anisms [24] have also been applied in the existing RNN-

based [21] and TCN-based [18] STLF works. Wang et al.
introduce additional attention and rolling update modules into
Bi-LSTM, where the attention module is used to estimate
the weights of possessed load sequence coming from the
rolling update module to highlight the effective features and
achieve better results on two Australian STLF datasets [21].
Shi et al. propose a hybrid neural network that combines
vanilla TCNs with GRUs for STLF, where an attention layer
is added after a GRU layer to highlight the key features
generated by GRU [18]. Differently from these works, our
input attention (IA) is added before TCNs, aiming to assign
different importance weights to elements of the input load
sequences; due to its high applicability and portability, the
proposed IA module can also be incorporated into the above
works to further improve their forecasting performances.
CNN or TCN based models for other forecasting tasks.
CNN and TCN are also widely used in many other sequential
data based forecasting tasks that are closely related to STLF.
For example, CNN and TCN are widely used in the task of
traffic forecasting to model the temporal information within
traffic data. Specifically, a Graph WaveNet model is proposed
in [23] to predict the future traffic condition, where TCN
and GCN are used to learn the temporal and spatial features,
respectively. Then, a GAMCN is further proposed in [16]
where a variant of GCN named LPGCN and a multi-path
CNN (which has a similar structure as TCN) are proposed
to better model the spatial and temporal factors of traffic
data. Besides traffic forecasting, CNN or TCN is also used
in many other sequential forecasting tasks, e.g., medical
time series classification [14], dynamic prediction [11], and
weather forecasting [8], to model the sequential features.
Similar to our work, these CNN or TCN based forecasting
methods also use convolutional networks to model the long-
term dependency of sequential data. However, the CNN or
TCN models used in these works also encounter redundant
convolutional operation and equal input importance problems.
Since PhaCIA-TCN focus on resolving these two problems to
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Algorithm 1 PhaCIA-TCNs

Require: Input data x0, x1, x2, ..., xt, max epoch tmax, batch
size S.

1: for t = 0 to tmax do
2: Get the S0, S1, ...Si according to the batch size and

input sequence data
3: Obtaining a intermediate attention vector A0 using Eq. 1
4: Obtaining a completed attention vector A1 using Eq. 2
5: Generating the weighted load sequence S1 using

Eq. 3. Then, getting intermediate data sequence
x̂0, x̂1, x̂2, ..., x̂t

6: Obtaining an intermediate sequence S1
i using Eq. 4

7: Getting an activated sequence S2
i using Eq. 5

8: Obtaining a residual sequence S3
i using Eq. 6

9: Using an element-wise summation Eq 7 to obtain the
output sequence of PhaC Si+1. Get output sequence
y0, y1, y2, ..., yt according to the batch size

10: end for

optimize the structure of TCNs and obtain a better TCN-based
backbone model for sequential data forecasting, PhaCIA-TCN
can also be integrated with these works to further enhance their
performances in the corresponding forecasting tasks.

III. METHODOLOGY

In order to resolve the existing shortcomings of using vanilla
TCNs in STLF tasks, in this work, a novel advanced TCN
model, called PhaCIA-TCN, is proposed. As shown in Fig. 1,
PhaCIA-TCNs adopt the classic TCN structure as the model’s
backbone to learn the features and temporal relationships from
the input power load sequences. However, differently from
vanilla TCN, parallel hybrid activated convolution (PhaC)
modules are proposed in PhaCIA-TCNs to replace the original
residual blocks, where we first remove a “redundant” con-
volution operation to reduce the model’s convolution depth
and enhance the learning efficiency, then we further use two
different parallel non-linear activation operations to ensure
sufficient non-linearities for the model to maintain a good
learning capability. Moreover, an additional input attention
(IA) module is integrated into PhaCIA-TCNs to estimate the
self-dependencies between elements of the input sequences to
highlight the important elements by assigning higher weights.
The pseudo-codes of the proposed PhaCIA-TCNs model are
shown in algorithm 1.

A. Classic TCN Structure

As shown in Fig. 1, the classic TCN structure effectively
learns non-linearity features by a stack of dilated casual convo-
lutional layers. Specifically, causal convolutions are the central
structure of TCN, which are designed to make the model
capable of processing sequential data and utilizing historical
information using convolutional operations. Furthermore, zero-
padding is utilized to ensure the sufficient processing of
boundary elements. Due to the limited receptive field, for long
sequential data, it needs many layers of causal convolution to

make full use of all historical information. Dilated convolu-
tions are thus introduced into TCNs to remedy this problem
by enlarging the receptive field of each convolution operation,
and make TCNs capable of capturing long-range dependencies
using a reasonable number of convolution layers. Finally, skip
connections are used in adjacent layers to improve the model’s
feature learning and convergence capability. See [1] for more
details about TCNs.

B. Input Attention Module

In PhaCIA-TCN, we first integrate an input attention module
(IA) into the classic TCN backbone to highlight the important
information of the input sequences, e.g., elements at peaks or
valleys of a power load sequence. IA mainly consists of a fully
connected linear layer (denoted Linear in Fig. 1), two fully
connected non-linear layers using ReLu and Tanh as activation
functions (denoted ReLU and Tanh), respectively, and two
residual connections. Generally, the linear and non-linear fully
connected layers are utilized to estimate the linear and non-
linear dependencies between elements of input sequences,
respectively, while the two residual connections are used to
enhance the feature learning and convergence ability of the
IA module. Finally, the estimated element-wise dependencies
are normalized by a Softmax operation to obtain a probability
distribution vector, which is then multiplied by the input load
sequence. With the help of IA, the important elements in the
input load sequence are assigned higher weights.

The formal definitions and detailed operations of IA are as
follows. As shown in Fig. 1, the input load sequence is denoted
as S0, where S0 ∈ RT , and T is the length of S0. In the IA
module, S0 is first sent to a fully connected linear layer, and
then further processed by a fully connected non-linear layer
(with ReLU as activation function) to obtain an intermediate
attention vector A0. Formally,

A0 = ReLU(Linear(S0)). (1)

Then, A0 is added with S0 by an element-wise sum operation,
and the summation result is further processed by the other
fully connected non-linear layer (with Tanh as activation
function) to obtain a completed attention vector A1. A1 is
then normalized by a Softmax operation to obtain the final
weighted importance vector A2. Formally,

A1 = Tanh(A0 + S0)

A2 = Softmax(A1).
(2)

Finally, the weighted importance vector A2 is applied to
the original input load sequence S0, using an element-wise
multiplication to generate the weighted load sequence S1.

S1 = A2 ⊗ S0. (3)

C. Parallel Hybrid Activated Convolution Module

In order to reduce the redundant convolution operations in
vanilla TCNs while maintaining a superior learning capability,
we creatively propose a parallel hybrid activated convolution
(PhaC) module to replace the original residual block in TCNs.
As shown in Fig. 1, the original residual block of vanilla TCNs
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consists of two consecutively connected basic convolutional
modules, which are identical with the same dilated causal
convolutional layer, normalization layer, ReLU operation, and
dropout. Although such a “redundant” structure may increase
the model’s learning capability with the help of additional non-
linearity, it inevitably increases the complexity of the model
and makes the model much more difficult to converge.

Differently, the proposed parallel hybrid activated convo-
lution (PhaC) module consists of solely a dilated causal
convolution operation (so, the model’s convolution depth is
greatly reduced) and utilizes two different parallel-arranged
non-linear activation operations (ReLU and Tanh) to maintain
a sufficient non-linearity. Experimental results show that PhaC
not only greatly enhances the model’s learning efficiency, but
also increases the forecasting accuracy; this may be because
two different activation functions in PhaC may bring better
diversity than two identical activation functions.

Specifically, as shown in Fig. 1, given an input sequence
Si generated from the previous layer i, the PhaC module first
processes Si using a dilated casual convolution (with dilated
rate d and kernel size k) and a normalization to obtain an
intermediate sequence S1

i . Formally,

S1
i = WeightNorm(Dilated Convdk(Si)). (4)

Then, S1
i is sent to the parallel-arranged non-linear activation

operations, whose results are multiplied to get an activated
sequence S2

i :

S2
i = ReLU(S1

i )× Tanh(S1
i ). (5)

A skip connection is also incorporated into the PhaC module,
where the input sequence Si is processed by a 1×1 convolution
block to obtain a residual sequence S3

i . Formally,

S3
i = Conv 1× 1(Si). (6)

Finally, after a dropout operation, the activated sequence S2
i

is added with the residual sequence S3
i using an element-wise

summation to obtain the output sequence of PhaC Si+1:

Si+1 = Sum(Dropout(S2
i ), S

3
i ) (7)

IV. EXPERIMENTS

A. Description of Dataset

To evaluate the performance of our proposed PhaCIA-TCN
model for STLF, we have conducted extensive experiments to
compare the STLF performances of PhaCIA-TCN with those
of the state-of-the-art RNN-based and TCN-based deep models
on three public datasets, namely, PJM1, GEFcom (GEF) [10],
and Entsoe (ENT)2. Specifically, PJM provides load data
within the Northeast and Midwest regions of United States;
GEF is released in the Global Energy Forecasting Competition
2014 (GEFCom2014) and includes global load data; the load
data of ENT are collected from 35 European countries. Each
dataset contains hourly-sampled power load sequential data for
an entire calendar year (2019 for PJM, 2004 for GEF, and 2015

1link: www.pjm.com
2link: www.entsoe.eu.
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…

Fig. 2: Generating subsequences using sliding windows.

for ENT), where the data points are divided into three subsets,
i.e., training set (containing data points generated from January
to September), validation set (containing data points generated
in October), and testing set (containing data points generated
in November and December). Specifically, the number of data
points in the training sets of PJM, GEF and ENT datasets
are 6575, 6587, and 6552, respectively; those in the validation
sets of PJM, GEF and ENT datasets are 720, 732, and 744,
respectively; and those in the testing sets are 1437 for all three
datasets.

B. Preprocessing

Normalization. Data normalization is applied to ensure the
values of the input data for each dataset are within the scale
of [0, 1]. In this work, we use max-minimum standardization
for data normalization, i.e., assuming the value of a given
sample in a dataset is x, the new value of this sample after data
normalization x̂ can be obtained by the following equation.

x̂ =
x−minD

maxD −minD
, (8)

where minD and maxD are the minimum and maximum load
values, respectively, in the given dataset.

Preprocessing for Daily Total/Peak Load Forecasting. In
STLF, we are often concerned about the following three
aspects of load forecasting tasks: (i) hourly load in the next few
hours, (ii) daily total load in the next few days, and (iii) daily
peak load in the next few days. So, we will evaluate the
forecasting performances of PhaCIA-TCN and all state-of-the-
art baselines on these three STLF tasks. However, since each
data point in the datasets represents the hourly load value,
to forecast the daily total load, we need to do further data
pre-processing to sum up the 24-hour load values belonging
to the same day to obtain the total load value of the given
day; similarly, for daily peak load forecasting, the maximum
one among the 24-hour load values is selected as the peak
load value of the given day. Consequently, the total number
of data points for daily total/peak load forecasting is 365 for
each dataset; and the numbers of data points in the training,
validation and testing sets for daily total/peak load forecasting
are respectively 273, 31 and 61 for each dataset.

Subsequence Generation. Finally, similarly to [18], [22], we
apply sliding windows to divide the sequential load data into
subsequences. Specifically, assuming that we want to use the
load values of the past m hours (or days) as the inputs to
predict the load values of the following n hours (or days),
given the length of the original sequence as L, the sliding
window method (with m + n as window size and 1 as step
size) is applied to obtain L −m − n + 1 subsequences with
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TABLE I: Accuracy results in three different load forecasting tasks of PhaCIA-TCNs and the state-of-the-art baselines.

Module

PJM GEF ENT

RMSE (WM) MAPE RMSE (WM) MAPE RMSE (WM) MAPE

w/o IA w/ IA w/o IA w/ IA w/o IA w/ IA w/o IA w/ IA w/o IA w/ IA w/o IA w/ IA

daily
total
load
(7-1)

RNN 21172.2 20691.1 4.80 4.67 78540.3 78308.9 11.84 11.84 18271.7 16862.9 6.70 6.28
LSTM 21103.1 20379.4 4.83 4.64 76605.6 65758.7 11.86 9.28 19145.3 17633.3 7.59 6.56
GRU 21001.3 20893.2 4.77 4.63 72666.8 71731.0 10.20 10.10 19103.5 18282.8 7.63 6.77

Bi-RNN 20882.1 20622.3 4.72 4.66 72517.8 71952.8 10.65 10.55 18216.3 16970.9 6.66 6.11
Bi-LSTM 21266.8 20437.8 4.78 4.66 69373.9 69356.4 9.72 9.72 19089.3 16272.9 7.66 5.85
Bi-GRU 21376.9 20794.7 4.89 4.75 65761.2 65247.9 9.24 9.24 19012.3 15767.7 7.58 5.58

TCN 20773.5 20291.4 4.69 4.54 65567.6 64540.5 9.08 9.01 15560.7 14704.6 5.59 5.25
TCN-GRU [18] 20168.2 20074.6 4.58 4.46 64475.2 64087.9 9.23 9.01 14444.3 14403.1 5.44 5.23

TCN-LightGBM [22] 22863.9 21074.3 5.11 4.87 65276.9 64372.6 10.40 9.06 14620.9 14584.1 5.88 5.45
MTCN [26] 20559.7 19438.4 4.62 4.50 65154.0 64306.3 11.62 9.44 14628.1 14507.0 5.37 5.13

PhaCIA-TCN 18680.5 − 4.11 − 63985.0 − 8.90 − 14321.6 − 5.07 −

daily
peak
load
(7-1)

RNN 1124.9 1099.8 5.70 5.56 4581.5 4566.4 14.04 13.98 860.6 813.5 6.43 6.14
LSTM 1076.4 1038.3 5.58 5.38 4627.6 4566.4 14.15 13.98 941.9 848.1 7.88 6.64
GRU 1057.0 1049.3 5.58 5.54 4556.7 4542.5 13.88 13.84 939.9 897.3 7.81 7.06

Bi-RNN 1145.7 1134.4 5.61 5.57 3790.8 3725.9 11.65 11.49 859.3 817.5 6.40 6.09
Bi-LSTM 1140.7 1072.1 5.96 5.54 4271.3 4267.6 12.81 12.79 937.2 766.3 7.80 5.74
Bi-GRU 1074.3 1067.2 5.60 5.58 4298.8 4290.4 12.89 12.87 927.3 782.3 7.66 5.86

TCN 1048.8 1030.5 5.45 5.32 3755.0 3705.1 11.29 11.27 778.2 692.2 5.63 5.13
TCN-GRU [18] 1020.7 1013.2 5.35 5.24 3719.6 3701.4 11.82 11.43 697.3 684.7 5.13 5.04

TCN-LightGBM [22] 1039.6 1024.3 5.43 5.31 3715.9 3698.1 12.06 11.76 741.6 690.1 6.12 5.43
MTCN [26] 1033.1 1017.9 5.42 5.27 3695.2 3687.0 11.62 11.25 704.5 688.4 5.27 5.09

PhaCIA-TCN 1003.2 − 5.17 − 3683.0 − 11.15 − 679.3 − 5.01 −

hourly
load

(24-4)

RNN 506.4 489.1 2.49 2.41 2625.0 2606.1 9.41 9.36 391.5 371.0 3.42 3.17
LSTM 840.7 828.1 4.35 4.26 1506.9 1493.4 5.61 5.58 350.9 337.3 3.01 2.91
GRU 532.4 524.9 2.69 2.62 1507.8 1425.2 5.87 5.29 313.7 309.1 2.68 2.66

Bi-RNN 531.2 484.0 2.69 2.38 2367.5 2223.8 8.66 8.25 350.8 324.1 3.08 2.90
Bi-LSTM 647.1 546.9 3.31 2.82 1706.8 1699.9 6.57 6.56 394.5 369.8 3.36 3.15
Bi-GRU 583.5 550.8 3.03 2.87 1480.8 1464.5 5.44 5.38 377.0 364.1 3.24 3.15

TCN 474.9 468.5 2.40 2.35 1420.5 1394.5 5.38 5.22 291.0 279.4 2.45 2.33
TCN-GRU [18] 428.6 427.9 2.26 2.20 1404.7 1347.7 5.06 4.98 288.8 277.3 2.54 2.44

TCN-LightGBM [22] 468.0 447.6 2.35 2.27 1732.1 1407.2 6.72 5.44 283.0 274.6 2.46 2.37
MTCN [26] 446.7 431.3 2.37 2.29 1345.2 1324.0 5.32 5.07 284.0 275.1 2.40 2.34

PhaCIA-TCN 423.7 − 2.16 − 1312.5 − 4.96 − 267.1 − 2.31 −

length m+n, where the first m data points are used as inputs,
and the last n data points are ground truth labels of forecasting.
Fig. 2 shows an example, where L = 20, m = 7, and n = 1.

C. Baselines and Implementation Details

In the experiments, six RNN-based state-of-the-art deep
models, namely, RNNs, LSTMs, GRUs, Bi-RNNs, Bi-LSTMs,
and Bi-GRUs are first used as the baselines [27]. Furthermore,
since the goal of this work is to propose a more effective and
efficient TCN-based backbone model to replace vanilla TCNs
in STLF, the vanilla TCNs and three state-of-the-art TCN-
based SLTF models, TCN-GRU [18], TCN-LightGBM [22],
and MTCN [26] are further used as the baselines in this work.

PhaCIA-TCNs and all baselines are implemented in Py-
Torch and run on an NVIDIA GeForce GTX 2080 GPU.
The number of neurons in each hidden layer is 384 for all
models, the kernel size of vanilla TCNs and PhaCIA-TCNs is
5, and the dilated rate is 2i in vanilla TCNs and PhaCIA-TCNs.
TCN-GRU [18], TCN-LightGBM [22], and MTCN [26] are
all implemented following the settings in their corresponding
original works. All other models are trained using the Adam
optimizer, where the hyperparameters of Adam are β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. The initial learning rate is 0.00001,
and learning rate decay is adopted (multiplied by 0.95 every
50 epochs) to decrease the learning rate automatically as the

number of iterations increases. The batch size is 32 in daily
total/peak load forecasting and 64 in hourly load forecasting.

D. Evaluation Metrics

The load forecasting accuracy is the most important metric
to evaluate the quality of STLF models. In this paper, two
metrics, root mean square error (RMSE) and mean absolute
percentage error (MAPE), are used to evaluate the load fore-
casting accuracy of PhaCIA-TCNs and all baselines. The lower
the values of RMSE and MAPE, the better this accuracy:

RMSE =

√√√√ 1

N

n∑
i=1

(yi − ŷi)2,

MAEP =
100%

N

n∑
i=1

| ŷi − yi
yi

|,

(9)

where N is the total number of predicted load values, yi is
the true load value, and ŷi is the predicted load value.

E. Main Results

The short-term load forecasting results of PhaCIA-TCNs
and ten state-of-the-art baselines in terms of RMSE and MAPE
on three datasets are shown in Table I. As for daily total/peak
load forecasting, we evaluate the task of using the total/peak
load information of the past seven days to predict that of the
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(a) Results on the PJM dataset

(b) Results on the GEF dataset

(c) Results on the ENT dataset

Fig. 3: Visualized forecasting results of PhaCIA-TCN, TCN and RNN-based baselines on three datasets.

next day (denoted 7-1); as for hourly load forecasting, the
hourly load information of the past 24 hours is used to predict
those of the following 4 hours (denoted 24-4).

In Table I, we find that PhaCIA-TCNs always outperform all
the state-of-the-art STLF baselines in both evaluation metrics
for all forecasting tasks, which proves that the proposed
PhaCIA-TCNs are a better STLF backbone model than all
RNN-based and TCNs-based deep models. Furthermore, the
following additional observations are also found in Table I:
(i) We note that the TCNs-based results are generally better
than those of all six RNN-based models in all STLF tasks;

this demonstrates that there exists the unbalanced non-linearity
problem in RNN-based models, and TCNs can overcome this
problem by using stacked casual convolution operations to
process all elements by the same number of non-linearities
and thus achieve a better STLF performance. (ii) PhaCIA-
TCNs constantly outperform not only the classic vanilla TCN
but also all three state-of-the-art TCN-based STLF baselines,
TCN-GUR [18], TCN-LightGBM [22] and MTCN [26], under
all settings; this is because the existing TCN-based works
have the redundant convolutional operation and equal input
importance problems, which are resolved by parallel hybrid
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(a) Results on the PJM dataset

(b) Results on the GEF dataset

(c) Results on the ENT dataset

Fig. 4: Visualized forecasting results of PhaCIA-TCN and TCN-based baselines on three datasets, where TCN-LG stands for
TCN-LightGBM.

activated convolution (PhaC) and input attention (IA) mod-
ules in PhaCIA-TCNs, respectively. Finally, we integrate IA
modules to all seven SOTA baselines, and the results in Table I
show that the STLF accuracies of all baselines are significantly
enhanced after adding IA modules, which thus proves that
IA is with great effectiveness, applicability, and portability in
STLF tasks.

To illustrate the superior STLF accuracies of PhaCIA-TCNs,
Fig. 3 exhibits the visualized forecasting results of PhaCIA-
TCNs, vanilla TCN and all RCNN-based baselines on the test

sets of all three datasets, while Fig. 4 visualizes the forecasting
results of PhaCIA-TCNs, vanilla TCN and all TCN-based
baselines on the test sets of all three datasets. It can be seen
from the result curves that the forecasting errors mainly come
from the peak and valley positions of the results curve, i.e.,
the prediction of peak and valley values is generally more
difficult. By enlarging some peak and valley positions, we
further witness that the predicted values of PhaCIA-TCN are
generally much closer to the true values than those of the state-
of-the-art baselines at both peak and valley positions. This
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TABLE II: Forecasting accuracies in ablation studies, where the improvement rate (denoted imp) is based on RMSE.

Task (in-out) TCN TCN-IA TCN-PhaC PhaCIA-TCN

RMSE MAPE RMSE MAPE Imp(%) RMSE MAPE Imp(%) RMSE MAPE Imp(%)

PJM
daily total load (7-1) 20773.5 4.69 20291.4 4.54 2.32 20275.2 4.55 2.39 18680.5 4.11 10.07
daily peak load (7-1) 1048.8 5.45 1030.5 5.32 1.74 1023.9 5.36 2.37 1003.2 5.17 4.34

hourly load (24-4) 474.9 2.40 468.4 2.35 1.37 430.8 2.20 9.29 423.7 2.16 10.78

GEF
daily total load (7-1) 65567.6 9.08 64540.5 9.01 1.56 64869.4 9.02 1.06 63985.0 8.90 2.41
daily peak load (7-1) 3755.0 11.29 3705.1 11.27 1.33 3694.6 11.21 1.61 3683.0 11.15 1.92

hourly load (24-4) 1420.5 5.38 1394.5 5.22 2.98 1364.3 5.09 3.42 1312.5 4.96 7.60

ENT
daily total load (7-1) 15560.7 5.59 14704.6 5.25 5.50 14733.1 5.18 5.32 14321.6 5.07 7.96
daily peak load (7-1) 778.2 5.63 692.2 5.13 11.04 722.2 5.61 7.19 679.3 5.01 12.71

hourly load (24-4) 291.0 2.45 279.4 2.33 3.99 272.6 2.35 6.32 267.1 2.31 8.21

thus argues that the superior STLF accuracies of the proposed
PhaCIA-TCN are very likely due to the following reason, by
remedying the shortcomings of the SOTA baselines, PhaCIA-
TCNs can achieve a better performance in forecasting the peak
and valley load values.

F. Ablation Studies

To investigate the effects of the two proposed advanced
modules, input attention (IA) and parallel hybrid activated
convolution (PhaC), we conducted ablation studies, where
the two modules are combined with vanilla TCNs, resulting
in two intermediate models, TCNs with IA (TCN-IA) and
TCNs with PhaC (TCN-PhaC). Table II shows the models’
forecasting accuracies for all three forecasting tasks on the
three datasets. Then, the training, validation and testing losses
of these methods on the PJM dataset are plotted in Fig. 5 to
show the advantages of integrating IA and PhaC modules with
vanilla TCN (note that the resulting figures on GEF and ENT
datasets are similar, so they are omitted to keep it simple).
Furthermore, since the training efficiency is also important
for STLF models, we also compare the training time-costs of
vanilla TCNs, two intermediate models, and PhaCIA-TCNs in
Table III (only the hourly load forecasting results are shown,
those for daily load forecasting are similar).

Effectiveness of IA. We first compare the forecasting accu-
racies and training time-costs of vanilla TCNs with those of
TCN-IA. The results show that with the help of IA, TCN-
IA always outperforms vanilla TCNs on all STLF tasks in
terms of both metrics; this thus demonstrates the effectiveness
of IA in introducing importance weights to highlight key
elements within the input sequences and make sufficient use
of important information. However, the additional attention
operations inevitably increase the average training time of each
epoch (denoted Avg.T in Table III) and thus make TCN-IA
cost more time in training (denoted Total T) than vanilla TCNs.

Effectiveness of PhaC. We then compare the performances of
vanilla TCNs and TCN-PhaC in Tables II and III. The results
show that using PhaC can not only increase the model’s fore-
casting accuracy in STLF tasks but also decreases the model’s
convergence time-costs. This greatly supports our argument
that using the PhaC module to replace the original residual
block in vanilla TCNs can resolve the problem of redundant
convolutional operations (thus enhancing the efficiency), while
maintaining a good sequential learning capability using two
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Fig. 5: Training, validation and testing losses on PJM dataset.

different parallel-arranged activation functions (thus enhances
the accuracy).

Effectiveness of using both IA and PhaC. Finally, we find
that by using both the IA and the PhaC module, PhaCIA-
TCNs outperform TCN-IA and TCN-PhaC in terms of both
RMSE and MAPE in Table II. This is because the IA and
PhaC modules are designed to resolve different problems in the
existing TCNs-based works, and can complement each other
to improve the deep model’s STLF accuracies. In addition, by
comparing the time-costs of all models in Table III, we observe
that the training time-costs of PhaCIA-TCNs are between
those of TCN-IA and TCN-PhaC, and are similar to (some-
times even lower than) those of the existing TCNs models.
So all the above observations demonstrate that PhaCIA-TCNs
are an effective and efficient TCN-based backbone model
for STLF, and both IA and PhaC modules are effective and
essential for PhaCIA-TCNs to achieve superior performances.
Visualizing training, validation and testing losses. To visu-
alize the advantages of the proposed IA and PhaC modules
in STLF tasks, we further plot the training, validation and
testing losses of TCN, TCN-IA, TCN-PhaC, and PhaCIA-TCN
in Fig. 5 (note that the testing set is only used once on the
well-trained model, so it only results in one loss point). By
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TABLE III: Training time-costs in ablation studies.

Dataset Task (24-4) TCN TCN
-IA

TCN
-PhaC

PhaCIA
-TCN

PJM
Avg.T(s) 1.81 2.15 1.26 1.40

# of Epoch 262 251 333 349
Total T(s) 476.59 538.79 421.48 487.41

GEF
Avg.T(s)) 1.95 2.19 1.34 1.53

# of Epoch 118 152 109 111
Total T(s) 230.28 332.99 146.38 169.82

ENT
Avg.T(s) 1.74 2.05 1.24 1.39

# of Epoch 379 354 445 466
Total T(s) 659.37 725.64 553.89 646.87

comparing the results of TCN-IA and TCN, we find that the
proposed IA module can greatly reduce all losses (e.g., the
testing loss is reduced from 0.324 to 0.178), which thus helps
the model learn more accurate features. Then, by comparing
TCN-PhaC (Fig. 5(c)) with TCN (Fig. 5(a)), we observe that
the proposed PhaC module can also enhance the model’s
learning capability to make it converge to lower losses. Finally,
by using both IA and PhaC modules, the proposed PhaCIA-
TCN can reach very low training, validation, and testing
losses (e.g., the testing loss of PhaCIA-TCN is only 0.074).
Consequently, these observations demonstrate that both IA and
PhaC modules effectively reduce the training, validation and
testing losses, making PhaCIA-TCN work much better than
the vanilla TCN in STLF tasks.

Training efficiency. We further investigate the training ef-
ficiency of PhaCIA-TCN and the intermediate models in
ablation studies as follows. As shown in Table III, we can
first observe that, due to the additional attention operations,
the average time-cost of each epoch (denoted Avg.T) in TCN-
IA is higher than that of vanilla TCN, which thus increases
the model’s total training time-cost (denoted Total T), as the
number of training epochs of TCN-IA is similar to that of
TCN. Then, we also find that, with the help of PhaC modules,
the Avg.T of TCN-PhaC is greatly reduced to about two-thirds
of TCN; therefore, although the number of training epochs of
TCN-PhaC sometimes increases slightly (because, as shown in
Fig. 5 and discussed in the above paragraph, the PhaC module
needs slightly more epochs to achieve lower losses, learn more
features, and further enhance the forecasting accuracies), the
total training time-cost of TCN-PhaC is always lower than
that of TCN. Finally, by integrating both IA and PhaC modules
with TCN, the Avg.T of the proposed PhaCIA-TCN is slightly
higher than that of TCN-PhaC but much lower than those of
TCN and TCN-IA, and the number of epochs of PhaCIA-TCN
is similar to that of TCN-PhaC and slightly higher than those
of TCN and TCN-IA in some cases; consequently, the total
time-cost of PhaCIA-TCN is slightly worse than that of TCN-
PhaC, better than that of TCN-IA, and similar (sometimes even
better) to that of TCN. In summary, the above observations
sufficiently support our arguments that, by integrating IA and
PhaC with TCN, the proposed PhaCIA-TCN not only greatly
outperforms TCN in forecasting accuracies but also keeps
similar (sometimes even better) learning efficiency.

TABLE IV: Forecasting accuracies of PhaCIA-TCNs for different
lengths of input and output sequences on three datasets.

in-out PJM GEF ENT

RMSE MAPE RMSE MAPE RMSE MAPE

to
ta

l
lo

ad 7-1 18680.5 4.11 63985.0 8.90 14321.6 5.07
7-2 25239.9 5.44 75097.8 11.22 15124.6 5.32
14-1 18419.3 4.05 69065.0 9.44 15525.3 5.76
14-2 23534.2 5.17 78910.4 11.28 16791.9 6.22

pe
ak

lo
ad 7-1 1003.2 5.17 3683.0 11.15 679.3 5.01

7-2 1276.9 6.55 4368.4 12.99 751.7 5.43
14-1 967.6 5.09 3791.9 11.27 750.2 5.38
14-2 1181.5 6.17 4618.3 13.12 783.3 5.64

ho
ur

ly
lo

ad 24-4 423.7 2.16 1312.5 4.96 267.1 2.31
24-6 523.8 2.66 1672.1 6.30 301.2 2.56
48-4 443.7 2.24 1430.6 5.58 278.8 2.42
48-6 541.8 2.70 1770.2 6.47 306.7 2.59

G. Effect of Varying Lengths of Input and Output Sequences

In real-world STLF applications, the forecasting demands
are various, so additional experiments have been conducted to
investigate the strategies for selecting the lengths of the input
and output sequences in practical usage.

First, the results in Table IV show that with the increase
of the lengths of output sequences, the forecasting accuracies
of PhaCIA-TCNs always become worse. This is because
more information needs to be predicted when the output
sequence becomes longer, i.e., the prediction task becomes
more difficult, so when the learning ability (i.e., other settings)
of the model remains unchanged, the forecasting accuracy of
the model will inevitably deteriorate. Therefore, on the premise
of satisfying the practical needs, we should set the length of
the predicted sequences as short as possible. This is also why
we impose preprocessing and learn the model on daily-sample
data for daily load forecasting, instead of directly predicting
the load values of the next 24 hours based on hourly-sampled
data.

Second, we note that the effect of changing the length of the
input sequence is uncertain: the forecasting accuracies increase
in some cases (e.g., daily total/peak load on PJM) but decrease
in others (e.g., daily total/peak load on GEF and ENT) with
the rise of the lengths of input sequences. This may be due
to the differences in data characteristics of different STLF
tasks: Input sequences of the same length may be too short to
contain the whole latent sequential features in some tasks, but
may be too long to introduce unnecessary noise in others; so,
increasing the input length will improve forecasting accuracies
in the former cases, but makes the forecasting worse in the
latter. Therefore, pre-experiments are needed to properly tune
the length of input sequences in PhaCIA-TCNs before usage.

H. Effect of Varying Hyperparameters

The number of neurons in each hidden layer (denoted
N ) and the size of kernels (denoted K) are two important
hyperparameters for TCN-based models. So, experiments are
conducted to investigate the effects of varying these two
hyperparameters on the model’s training quality in terms of
RMSE on the validation sets for the hourly load forecasting
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Fig. 6: RMSE of PhaCIA-TCNs on validation sets of three datasets.

tasks on three datasets. To enhance the efficiency of computing
using GPU, the value of N is searched from 128 to 640 with a
step of 128, and the value of K is searched within [3, 4, 5, 6, 7].
The results in Fig. 6 show that the RMSE of PhaCIA-TCNs
fluctuates with the increase of the values of K (resp., N ) on
all three validation sets, but the best forecasting accuracies
are achieved coincidentally under the same setting, i.e., when
K = 384 (resp., N = 5), on all three datasets. Therefore, we
set the number of neurons to 384 and the kernel size to 5.

V. CONCLUSION AND FUTURE WORK

In this paper, we first identified existing shortcomings of
RNN-based (i.e., unbalanced non-linearity problem) and TCN-
based (i.e., redundant convolutional operation and equal input
importance problems) STLF models, and then proposed a
novel TCN-based backbone model, PhaCIA-TCN, to remedy
these problems and a achieve better short-term load fore-
casting performance. Extensive experiments were conducted,
and their results proved that (i) the proposed PhaCIA-TCNs
achieved much better STLF accuracies than the state-of-
the-art baselines, (ii) the advanced modules, parallel hybrid
activated convolution (PhaC) and input attention (IA), were
both effective and essential for PhaCIA-TCNs to achieve the
superior STLF performances, and (iii) even integrated with
PhaC and IA modules, the training time-cost of PhaCIA-TCNs
is similar (and sometimes even lower) to that of the existing
TCNs-based solutions.

In the future, we intend to apply PhaCIA-TCNs to more
STLF tasks in practice to verify their applicability and scal-
ability. It may also be interesting to extend PhaCIA-TCNs to
consider additional information (e.g., weather [8]) and multi-
modal learning [28] for more accurate STLF. In addition, a
‘smaller peak value” phenomenon (i.e., the prediction results
of all methods around the peaks are usually smaller than
the real load values) is noticed in Figs 3 and 4; this may
because the RNN and CNN (including TCN) based sequential
modeling methods aim to learn the universal characteristics of
the sequential data, so it may treat the peak and valley values
as outliers and give “conservative” predictions; considering the
importance of peak and valley values in STLF tasks, it is an
interesting future work to further discover a solution to remedy
this issue.
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