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A B S T R A C T

Although existing deep reinforcement learning-based approaches have achieved some success in image
augmentation tasks, their effectiveness and adequacy for data augmentation in intelligent medical image
analysis are still unsatisfactory. Therefore, we propose a novel Adaptive Sequence-length based Deep Rein-
forcement Learning (ASDRL) model for Automatic Data Augmentation (AutoAug) in intelligent medical image
analysis. The improvements of ASDRL-AutoAug are two-fold: (i) To remedy the problem of some augmented
images being invalid, we construct a more accurate reward function based on different variations of the
augmentation trajectories. This reward function assesses the validity of each augmentation transformation
more accurately by introducing different information about the validity of the augmented images. (ii) Then, to
alleviate the problem of insufficient augmentation, we further propose a more intelligent automatic stopping
mechanism (ASM). ASM feeds a stop signal to the agent automatically by judging the adequacy of image
augmentation. This ensures that each transformation before stopping the augmentation can smoothly improve
the model performance. Extensive experimental results on three medical image segmentation datasets show
that (i) ASDRL-AutoAug greatly outperforms the state-of-the-art data augmentation methods in medical image
segmentation tasks, (ii) the proposed improvements are both effective and essential for ASDRL-AutoAug to
achieve superior performance, and the new reward evaluates the transformations more accurately than existing
reward functions, and (iii) we also demonstrate that ASDRL-AutoAug is adaptive for different images in terms
of sequence length, as well as generalizable across different segmentation models.
1. Introduction

In recent years, deep learning models have achieved remarkable
success in various computer vision tasks, such as image classifica-
tion [1], object detection [2], segmentation [3–5], super-resolution and
denoising [6], which have contributed to the booming development of
automated medical image analysis. Automated medical image analysis
is beneficial to help clinicians save time and effort in disease diagnosis,
treatment plan design, and prognosis assessment, and reduce the risk
of misdiagnosis and missed diagnosis. However, limited by the volume
of medical image data, deep learning models for automated medical
image analysis usually suffer from overfitting [7], which reduces the
generalization ability of the model and prevents reliable results.
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Data augmentation increases the amount and diversity of training
data by applying semantically invariant image transformations and is
the most commonly used regularization technique to combat overfit-
ting, due to its simplicity and effectiveness [8–10]. Traditional data
augmentation methods generate training images by applying basic
operations such as geometric transformations (e.g., rotation, cropping)
and pixel-level transformations (e.g., noise addition, sharpening) on the
training images [11–14], but these methods usually randomly select a
sequence of transformations for each image or rely on human experts
with a priori knowledge of the dataset to craft a sequence of transfor-
mations to be applied in training, resulting in training samples with
insufficient diversity. Therefore, some advanced data augmentation
operations, such as Random Erasing [15], KeepAugment [16], and
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SaliencyMix [17] have been proposed, which generate richer images by
region erasing or sample mixing. In addition, data augmentation based
on generative adversarial networks [18] improves the performance of
medical image analysis tasks by generating virtual data with the same
distribution as the real data. All these methods improve the accuracy
of the model to some extent, but a common limitation is that the
change in the accuracy of the model cannot be fed back to adjust the
data augmentation network. So, it is difficult to determine the data
augmentation operation that improves the model performance best.

To address the above problem, Cubuk et al. [19] pioneered an
automatic data augmentation method called AutoAugment, which is
based on deep reinforcement learning (DRL). AutoAugment automat-
ically searches for a sequence of transformations that can maximize
the performance of the classifier. Although this approach reduces the
classification error rate to some extent, this search process requires
repeatedly training the sub-model sufficiently with different augmenta-
tion policies to obtain feedback on the agent. So, AutoAugment is not
only computationally intensive but also time-consuming. In addition,
AutoAugment aims to find the best augmentation sequence for the
whole dataset and then apply it to each training image. However, the
optimal combination of transformations is different for each image, so
some augmented images may not be useful or even harmful for model
training.

Aware of these limitations, researchers have recently started to fo-
cus on improved approaches to AutoAugment through grid search [20],
approximation algorithms for bi-level problems [21,22], and learn-
ing sample-specific augmentation sequences [23–25] to improve the
speed and effectiveness of image augmentation. However, these ex-
isting methods suffer from the following two problems. (i) Some of
the augmented images are invalid. Since the reward functions of
these methods only consider the relative change in model accuracy
between two adjacent augmentations, their assessment of the validity
and necessity of each augmentation transformation is inaccurate. As
shown in the rising stage of the red line in Fig. 1, the performance of
the model at this point is lower than the initial performance. This case
indicates that the transformations selected by the agent for the current
image are invalid. However, the environment of existing methods gives
a positive reward value back to the agent in this case, which encourages
the agent to select these invalid transformations and then produce in-
valid images. (ii) The augmentation of some images is insufficient.
These methods set the maximum length of the transformation sequence,
i.e., the maximum number of transformations, based on human priori
knowledge. For images from different datasets or different images from
the same dataset, the limitation of a uniform length will result in the
augmentation of some images being inadequate. As shown by the blue
line in Fig. 1, the model performance can still be improved if the
augmentation of images continues after reaching the maximum number
of times that has been artificially set.

Therefore, in this work, we propose a novel Adaptive Sequence-
length based Deep Reinforcement Learning (ASDRL) model for
Automatic data Augmentation (AutoAug) in intelligent medical image
analysis, denoted ASDRL-AutoAug, where the problem of partially
augmented images being ineffective and the problem of augmentation
of partial images being insufficient are remedied using the reward func-
tion with dual constraints (𝑅𝑑𝑐) and the automatic stopping mechanism
(ASM), respectively. Specifically, in deep reinforcement learning, the
agent learns the ASDRL-AutoAug policy by interactively optimizing
training with the task model using 𝑅𝑑𝑐 and then is gradually able
to sequentially select effective transformations for each input image.
By using ASM, this sequential decision process is not limited by the
maximum number of times, which makes the sequence of transfor-
mations for this image have a suitable length. Overall, the proposed
ASDRL-AutoAug has the following two main improvements. First, to
remedy the problem of invalid augmented images due to inaccurate
evaluation, we propose a more accurate reward function 𝑅𝑑𝑐 based
2

on the different variations of the augmentation trajectories. In 𝑅𝑑𝑐 , we
Fig. 1. Augmentation trajectory, representing the change of segmentation model
accuracy caused by each augmentation of an image. The horizontal axis indicates the
number of augmentations, the vertical axis indicates the model accuracy, and the origin
indicates the initial model accuracy, which is a non-zero value. The red line is an
example of augmentation trajectories when some of the augmented images are invalid
while the blue line indicates an example when the augmentation of some images is
insufficient.

introduce an absolute difference between the model accuracy after each
augmentation and the initial accuracy while preserving the relative
difference of the model accuracy between two adjacent augmentations.
These two differences contain different information about the validity
of each transformation, so we use these two differences to provide dual
constraints for 𝑅𝑑𝑐 , which makes its assessment of the validity of each
transformation more accurate.

In addition, to alleviate the problem of insufficient augmentation
of some images, we propose an intelligent automatic stopping mech-
anism ASM, which first judges the adequacy of image augmentation
by the change of the augmentation trajectory of each image. Then,
ASM makes the environment feed a stop signal for the agent when
the augmentation is sufficient, which makes the agent automatically
stop the augmentation process of that image. This automatic stopping
method enables the agent to learn the ability to make an increas-
ing trend of the augmentation trajectory in a nearly infinite search
space, i.e., each transformation before stopping the augmentation can
smoothly improve the model performance. So, the agent decides on
the sequence of transformations with the appropriate length for each
image, which makes the image augmentation more sufficient.

The main contributions of this paper can be summarized as the
following three points:

• We identify two problems in the existing AutoAugment family
and then propose an Adaptive Sequence-length based Deep Rein-
forcement Learning (ASDRL) model for Automatic data Augmen-
tation (AutoAug) in intelligent medical image analysis, denoted
ASDRL-AutoAug, to remedy these problems thereby improving
the performance of the existing AutoAugment family.

• In ASDRL-AutoAug, we innovatively propose a reward function
with double constraints 𝑅𝑑𝑐 . 𝑅𝑑𝑐 remedies the problem of invalid
augmented images by more information about the validity of the
transformation to more accurately evaluate the validity of each
transformation. Then, in order to solve the problem of insuffi-
cient augmentation of some images due to human constraints
in existing methods, we further innovatively propose an auto-
matic stopping mechanism (ASM). ASM automatically feeds the
stopping signal to the agent by assessing the adequacy of image
augmentation, ensuring that each transformation before stopping
the augmentation can steadily improve the model performance,
and thus improve the adequacy of image augmentation.

• Extensive experimental studies on three public medical image
datasets show that (i) the proposed ASDRL-AutoAug achieves bet-
ter performance than state-of-the-art data augmentation methods

in downstream segmentation tasks, and (ii) both the proposed
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𝑅𝑑𝑐 and ASM are effective and essential for ASDRL-AutoAug to
achieve superior performance, and 𝑅𝑑𝑐 evaluates the transforma-
tion more accurately than existing reward functions. (iii) we also
demonstrate the adaptiveness of ASDRL-AutoAug to different im-
ages in terms of sequence-length, and its universality to different
segmentation models.

The rest of this paper is organized as follows. Section 2 presents the
elated work and clarifies the differences between our work and the
eferences. The detailed methodology of the proposed ASDRL-AutoAug
s given in Section 3, which is followed by the experimental studies in
ection 4. Section 5 discusses the social impact, limitations, and future
orks of the proposed work, and the conclusion is given in Section 6.

. Related work

asic image augmentation. Basic image augmentation transforma-
ions include geometric and non-geometric transformations, such as
otation, crop, flip, zoom, noise injection, contrast, and kernel filtering.
uch transformations help improve the generalization performance of
he model by modifying the geometry and visual features of the image
o expose the model to a wider range of image variations during
raining. Being relatively efficient and easy to implement, basic image
ugmentation transformations have been widely used for a variety
f image-related tasks in recent years. For example, to improve the
erformance of classification models, 3-Augment [13] randomly selects
ne of the three data transformations grayscale, Gaussian blur, and
olarization with equal probability to augment each image. Han et al.
11] apply horizontal flipping and translation by 4 pixels to the images
n CIFAR-10 and CIFAR-100 for augmentation during training. In detec-
ion, Liu et al. [12] improve the detection model accuracy by resizing
ach sample block to a fixed size and flipping it horizontally with a
robability of 0.5. Yang et al. [14] use cropping and flipping for semi-
upervised semantic segmentation for weak augmentation to improve
he performance of segmentation on medical image datasets through
he weak-to-strong consistency framework. Furthermore, for biomedi-
al images, Bloice et al. [26] propose the Augmentor package, which
llows the user to achieve stochastic, pipeline-based data augmentation
y controlling the probability parameter of each transformation.

The above works use traditional data augmentation methods, i.e.,
andomly selecting a sequence of basic transformations for each image
r relying on a human expert with prior knowledge of the dataset
o craft a sequence of transformations to be applied in the training.
ince randomness tends to introduce significant noise into the data and
anually selected transformations based on the nature of the dataset

re not applicable to each image, random and manual augmentation
trategies are not optimal for improving model performance. However,
ur proposed ASDRL-AutoAug can automatically learn the appropriate
ombination of basic transformations for each image based on the task
odel to better improve the model performance.

dvanced image augmentation. To force the model to better learn
he representational information of the image, two advanced image
ugmentation transformations, image erasing and image mixing, have
een proposed. Image erasing involves removing one or more sub-
egions of an image and replacing the pixel values of these sub-regions
ith constant values, random values, or the average of the entire
ataset. For example, DeVries and Taylor [27] propose the Cutout,
hich randomly masks a square region on the training image during

he training of the convolutional neural network and can improve
he robustness and overall performance of the convolutional neural
etwork. Kumar Singh and Jae Lee [28] propose Hide-and-Seek, which
ivides the training image into uniform squares of random size and
hen randomly hides a specified number of these squares, aiming to
orce the neural network to learn relevant features by hiding the most
3

iscriminative content. Zhong et al. [15] propose Random Erasing,
which selects a rectangular region in an image by randomly deciding
whether to mask the region and also randomly deciding the aspect ratio
and size of the masked region. Chen et al. [29] propose a structured
method, called GridMask, to apply multi-scale grid masks to images to
simulate occlusion, aiming to trade off complete object erasing with
stripping contextual information. While image erasing is effective in
some applications, such methods will lead to the removal of important
information, negatively impacting the performance of the model.

Image mixing is divided into two categories based on the number of
images used in each mixing. (i) Single-image mixing techniques: a sin-
gle image sub-region is mixed from different mixing perspectives. For
example, Kim et al. [30] propose LocalAugment, which increases the
diversity of local features to improve the generalization performance of
neural networks by dividing the image into smaller blocks and applying
different data augmentations to each block; Seo et al. [31] propose
self-augmentation, which improves the generalization performance by
cropping random regions of the image and then pasting them to random
locations in the image generalization ability of few-shot learning; Choi
et al. [32] propose SalfMix, which crops most salient regions and
places them into non-salient regions based on saliency map; Gong et al.
[16] propose KeepAugment, which increases fidelity by preserving
salient features of images and increasing non-salient regions to increase
diversity without changing the distribution. (ii) Multi-image mixing
techniques: applying different mixing strategies to mix two or more
images into one image. For example, the mixup proposed by Zhang
et al. [33] improves the model accuracy and robustness by mixing two
images and corresponding labels based on a mixing factor (alpha). Yun
et al. [34] propose CutMix to solve the problem of information loss and
region loss by randomly selecting a square region on the training image
and filling it with patches from another image. SaliencyMix proposed
by Uddin et al. [17] avoids the model from learning unnecessary
information by selecting a salient part of an image and pasting it into
another image.

While these methods achieve promising improvements on their
corresponding tasks by generating richer images, the challenge lies
in the inability to feed back variations in model accuracy to adjust
the data augmentation strategy. Consequently, the stochastic strategy
they employ becomes challenging to balance increasing the amount of
data while maintaining the integrity of information in the images. In
contrast, ASDRL-AutoAug evaluates each augmentation transformation
based on our newly proposed reward function. It learns through this
feedback, enabling the obtention of sequences of transformations that
result in improved model performance.

Automatic data augmentation. In recent years, to solve the prob-
lems caused by manual or random augmentation strategies, automatic
data augmentation methods are proposed to search for the optimal
augmentation policy for a given dataset. After validating the effective-
ness of AutoAugment in classification [19] and detection [35] tasks,
RandAugment [20] is further proposed to select the transformation
with uniform probability 1/K and automatically find the number and
amplitude of transformations by grid search. To reduce the search
time, the subsequent work has two main directions of improvement.
On the one hand, both Fast AutoAugment [36] and Faster AutoAug-
ment [37] use an efficient search strategy based on density matching
to find more optimal sequences of transformations. Addressing opti-
mization speed challenges in works like AutoAugment and Fast Au-
toAugment, [38] propose Differentiable Automatic Data Augmentation
(DADA), reducing costs by relaxing discrete data augmentation strate-
gies to differentiable optimization problems through Gumbel-Softmax.
Subsequently, Tang et al. [39] propose AutoPedestrian, which models
the data augmentation strategy and the loss function strategy as two
distributions with different hyper-parameters. The method then finds
the data augmentation strategy and the loss function simultaneously
via an automatic pedestrian scheme with significant sampling. Zhou
et al. [40] propose IDADA to solve the error problem of discrete-

continuous coding in DADA and the gradient estimation inaccuracy
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Fig. 2. Overview of our adaptive sequence-length based deep reinforcement learning (ASDRL) model for automatic data augmentation (AutoAug) in intelligent medical image
analysis (ASDRL-AutoAug). We demonstrate ASDRL-AutoAug using the Cardiac dataset as an example, where (𝑥𝑖, 𝑦𝑖) denotes the original image and its annotation, and (𝑥𝑡𝑖, 𝑦𝑡𝑖)
denotes the image and its annotation after the t-th augmentation. Specifically, ASDRL-AutoAug mainly consists of two parts: the agent and the segmentation model, where the
agent includes the encoder and the Dueling-DQN, which are used for extracting the image features and deciding the augmentation transformation, respectively; there are two
segmentation models: (i) and (ii) have the same structure, with (i) pre-trained by the training set, and the initial weights of (ii) migrated from (i), and at each time step (ii) is
fine-tuned by (𝑥𝑡𝑖, 𝑦𝑡𝑖) and reset to the initial weights at the end of (𝑥𝑖, 𝑦𝑖) augmentation. The agent updates Dueling-DQN according to the reward with dual constraints (𝑅𝑑𝑐 ) and
performs adaptive sequence-length augmentation on the current image according to 𝐷𝑜𝑛𝑒𝑡 in the Automatic Stopping Mechanism(ASM). In particular, the processed image (𝑥𝑡𝑖, 𝑦𝑡𝑖)
is used as input of the agent at t+1 until the end of the augmentation of (𝑥𝑖, 𝑦𝑖).
problem so that the selection probability of the augmentation operation
is tilted towards its extreme value, which achieves better results in
the pedestrian detection task. However, the augmentation strategies
in the above methods are applied to the entire dataset and are not
image-specific, so the augmentation may not be suitable for each image.
Furthermore, in these methods, the length of the sub-strategy is set to
2, so each image can only be transformed twice per augmentation. This
restriction on the number of transformations makes the augmentation
insufficient for some images.

On the other hand, in order to reduce the search time, AWS [21]
improves the bi-level optimization process of automatic data augmen-
tation by using a two-stage approximation algorithm to complete the
evaluation of the image transformations without training the classifier
from scratch. Subsequently, based on the approximation algorithm of
the bi-level optimization process, Minh et al. [24] and Li et al. [23]
improve the downstream classification and segmentation accuracy by
jointly training the task network and the agent, so that the agent au-
tomatically makes decisions on the transformations sequence used for
each image. However, the reward functions of these methods contain
less information about the effectiveness of augmentation, which pre-
vents the reward function from accurately assessing the goodness of the
augmentation transformations, thus rendering some of the transformed
data invalid. In addition, the above methods impose a limit on the
number of transformations per image, which makes the augmentation
of some images inadequate.

In particular, several works migrate automatic data augmentation
methods to medical image augmentation. ASNG [22] defines the prob-
lem of finding an optimal augmentation strategy as a discrete search
problem. By designing a search space and a search algorithm, ASNG
automatically searches for the augmentation strategy for the medical
image segmentation task and determines the magnitude of the aug-
mentation operation and the probability of applying the operation.
SLSRL [41] employs reinforcement learning to search for the probabil-
ity of applying each augmentation operation, shaping the augmentation
4

strategy for a specific dataset. He et al. [42] migrate DADA to medical
image segmentation and design a dedicated search space and optimiza-
tion strategy for the medical image segmentation task. ADA-DRL [25]
enables the agent to find a specific data augmentation sequence for
each kidney tumor image by interacting with a downstream segmen-
tation model. MedAugment [43] designs a new augmentation space
and an operation sampling strategy to automatically select the mag-
nitude and probability of an augmentation operation for a medical
image dataset. While automatic data augmentation methods designed
for medical images share similarities with those for natural images in
terms of the augmentation process, it is crucial to note that medical
images exhibit greater sensitivity to the selection of augmentation
operations. In addition, the above works also set the maximum number
of augmentations, which makes some of the augmented medical images
invalid and some of the medical images insufficiently augmented.

In conclusion, the existing methods suffer from the invalidation
of some transformed images and insufficient augmentation of some
images, which results in non-optimal basic transformation sequences
for some images. Our work aims to address the above issues and use
deep reinforcement learning to find more valid image augmentation
sequences for downstream tasks, and thus improve the accuracy of the
model more sufficiently.

3. Adaptive sequence-length based deep reinforcement learning
model for automatic data augmentation

Fig. 2 illustrates the overall flow of the proposed Adaptive Sequence-
length based Deep Reinforcement Learning (ASDRL) model for Au-
tomatic data Augmentation (AutoAug) in intelligent medical image
analysis (ASDRL-AutoAug). First, we conduct a fully supervised pre-
training of the randomly initialized U-Net segmentation model [44].
The objective is to attain a model with good segmentation accuracy
on the original training set, establishing an absolute constraint on the



Computers in Biology and Medicine 169 (2024) 107877Z. Xu et al.

t
s
a

𝑠

N
t
t
s
a

𝑎

𝑄

w
a
v
a
m
t
i

𝐿

𝑞

w
t
t
b
I
𝑟
v
m
p
b
e
t
t
a

3

l
t
e
b
f
m
m
i
W
d
r
s
o

Table 1
Transformation types and their amplitudes used in ASDRL-
AutoAug. These transformations are defined as actions.
Action Operation Amplitude

HF Horizontally Flip –
VF Vertically Flip –
LR/RR Left/Right Rotate 30◦

CL/CR Crop from Left/Right 20
CU/CD Crop from Up/Down 20
ZM ZooM 1.1
AN Add Noise Gaussian
IB Increase Brightness 0.1
DB Decrease Brightness 0.1

reward signal during data augmentation. Second, during data augmen-
tation, we construct a new reward (see Section 3.2) using both the
absolute constraint and another relative constraint, which aims to more
accurately evaluate the impact of the augmentation transformation
on the segmentation model performance. This reward facilitates the
agent in gradually and automatically selecting the best augmentation
transformation for each input image according to the segmentation
task. Additionally, through our proposed stopping method, ASM (see
Section 3.3), the agent can more intelligently find the sequence of
augmentation transformations for each image that sufficiently improves
the performance of the segmentation model.

Specifically, in the pre-training, we take the initial training set
N = (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) as the input of U-Net and obtain a model
𝑈 (𝜎) with good segmentation accuracy on the validation set V =
(𝑧1, 𝑤1),… , (𝑧𝑚, 𝑤𝑚), where 𝑥𝑖/𝑧𝑖 and 𝑦𝑖/𝑤𝑖 are the 𝑖th images and its
corresponding ground truth, respectively. In the data augmentation
process, we consider the search for the best transformation sequence
as a sequential decision process. First, the agent automatically selects
the optimal augmentation operation for the input image. Second, the
transformed image a ⊙ 𝑥𝑖 and its label a ⊙ 𝑦𝑖 are fed into the seg-
mentation model 𝑈 (𝜎) for fine-tuning. Then, a reward is constructed
by comparing the difference in segmentation accuracy before and after
the augmentation from the perspective of two constraints. Finally, the
reward is fed back to the agent to optimize the policy. In contrast
to other methods where the maximum number of augmentations is
uniformly set for all images based on manual experience, this augmen-
tation process has no limit on the maximum number of augmentations.
The agent automatically stops the augmentation process for each image
when the augmentation is deemed sufficient, based on the change in the
augmentation trajectory of that image.

In the above process, through interactive training with the seg-
mentation model, the agent progressively selects for each image an
augmentation transformation sequence (𝑎0, 𝑎1, …, 𝑎𝑡). With this aug-
mentation sequence, the input image 𝑥𝑖 is transformed to 𝑥𝑡𝑖 at step t,
and the corresponding label 𝑦𝑖 is transformed to 𝑦𝑡𝑖 at the same time:

𝑥𝑡𝑖 = 𝑎𝑡 ⊙ 𝑎𝑡−1 ⊙⋯⊙ 𝑎1 ⊙ 𝑥𝑖, (1)

𝑦𝑡𝑖 = 𝑎𝑡 ⊙ 𝑎𝑡−1 ⊙⋯⊙ 𝑎1 ⊙ 𝑦𝑖, (2)

where ⊙ denotes the operator of the augmentation transformation, and
the transformed image of each step in the sequence is used as the input
image for the next transformation. Finally, the augmented images form
an augmentation training set for the downstream segmentation task.

3.1. Training process

Algorithm 1 summarizes the implementation of the ASDRL-AutoAug.
In ASDRL-AutoAug, we use 12 classical data augmentation transforma-
tions as actions, as shown in Table 1. These 12 actions form the action
space and are formally defined as:

𝑡 (3)
5

𝐿(𝑠 ) = [𝐻𝐹, 𝑉 𝐹 ,𝐿𝑅,𝑅𝑅,𝐶𝐿,𝐶𝑅,𝐶𝑈, 𝐶𝐷,𝑍𝑀,𝐴𝑁, 𝐼𝐵,𝐷𝐵], t
where 𝑠𝑡 denotes the state sent to the agent at time step 𝑡, which
contains available information about the image content for the agent
to make decisions. Since the speed of the agent is low when learning
directly on large-size images, we use the encoder of the model 𝑈 (𝜎) as
he feature extraction module 𝐸(𝜎), so that the image 𝑥𝑖 is represented
tably on a high-dimensional latent space before being input to the
gent. Thus, 𝑠𝑡 is formalized as:
𝑡 = 𝐸(𝑥𝑖; 𝜎). (4)

Since the actions are discrete, we use a Dueling Deep Q-learning
etwork (Dueling DQN) [45] as the agent to learn the data augmen-

ation policy. Specifically, Dueling DQN takes the state 𝑠𝑡 as input,
hen estimates the impact of all actions on the performance of the
egmentation model according to the Q-function, and finally selects the
ctions with the maximum Q-value:
𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐿(𝑠𝑡)𝑄

𝜋 (𝑠𝑡, 𝑎; 𝜃, 𝛼, 𝛽), (5)

𝜋 (𝑠𝑡, 𝑎𝑡; 𝜃, 𝛼, 𝛽) = 𝑉 (𝑠𝑡; 𝜃, 𝛽) + (𝐴(𝑠𝑡, 𝑎𝑡; 𝜃, 𝛼)

− 1
|𝐴|

∑

𝑎𝑡+1
𝐴(𝑠𝑡, 𝑎𝑡+1; 𝜃, 𝛼)), (6)

here 𝑄𝜋 (𝑠𝑡, 𝑎𝑡; 𝜃, 𝛼, 𝛽) is the Q-function fitted by Dueling DQN, 𝜃 is
parameter of the convolutional neural network shared by the state-

alue function 𝑉 (𝜃, 𝛽) and the action advantage value function 𝐴(𝜃, 𝛼),
nd 𝛼, 𝛽 are parameters owned independently by each. We use the
ean square error loss to evaluate the error between the Q-value and

he actual variation 𝑞𝑖 of the segmentation model performance, which
s formally written as:

𝑜𝑠𝑠(𝜃, 𝛼, 𝛽) = (𝑞𝑖 −𝑄𝜋 (𝑠𝑡, 𝑎𝑡; 𝜃, 𝛼, 𝛽))2, (7)

𝑖 =
{

𝑟𝑡

𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1; 𝜃, 𝛼, 𝛽),
(8)

here 𝑟𝑡 denotes the immediate reward that the environment feeds
o the agent at each time step 𝑡. Specifically, 𝑟 is a scalar value
hat helps the agent evaluate whether the transformation is good or
ad, and 𝑡 denotes the time step. 𝑞𝑖 has two kinds of assignments.
f the augmentation ends, 𝑞𝑖 is assigned the current reward value
𝑡; otherwise, it is assigned the weighted sum of the current reward
alue and the further reward value, where 𝛾 is a hyperparameter. We
inimize this loss function so that Dueling DQN learns the policy to
erform data augmentation for each image. Additionally, the process
y which the agent acquires its capabilities is the process of trial-and-
rror exploration of the environment and an exploitation process of
aking actions that are known to maximize rewards [46]. To balance
he exploration and exploration of the agent, we use the 𝜖-decreasing
lgorithm [47] for the training of Dueling DQN.

.2. Reward with dual constraints

The design of the reward is critical to accurately assess the va-
idity of each augmentation transformation, which facilitates guiding
he agent to accurately select augmentation transformations. However,
xisting work only considers the relative changes in model accuracy
etween two adjacent transformations, which provides insufficient in-
ormation about the validity of each transformation. This limitation
akes the rewards inaccurate in assessing the validity of each aug-
entation transformation, leading to some of the augmented data being

nvalid. Therefore, we propose a new reward 𝑅𝑑𝑐 with dual constraints.
e introduce the absolute difference in model accuracy to provide

ifferent information about the validity of each transformation to the
eward function. This improvement allows 𝑅𝑑𝑐 to more accurately as-
ess the validity of each transformation, thereby alleviating the problem
f some augmented images being invalid.

The most intuitive performance evaluation metric in image segmen-
ation is the Dice Similarity Coefficient (DSC), as shown in Eq. (14).
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Algorithm 1 ASDRL-AutoAug
Input: Condition counter 𝑗𝑚𝑎𝑥; training epochs 𝑇 ; original training set N = (𝑋, 𝑌 ); validation set V = (𝑍, 𝑊 ); augmentation training set G = ∅;

segmentation loss function using dice loss 𝑠 and Dueling-DQN loss function using MSE loss 𝑝; segmentation network 𝑈 parameterized with
𝜎; the Dueling-DQN 𝑄 parameterized with 𝜃, 𝛼, and 𝛽.

1: Initialize model parameter 𝜎 by the original training set N
2: Initialize model parameter 𝜃, 𝛼, and 𝛽 randomly
3: Get the initial segmentation dice 𝐷𝑆𝐶 𝑖𝑛𝑖𝑡 = 𝐷𝑖𝑐𝑒 (𝑈𝜎(𝑍), 𝑊 )
4: for 𝑒𝑝𝑜𝑐ℎ = 1,… , 𝑇 do
5: Sample a training image (𝑥, 𝑦) from the (𝑋, 𝑌 ) pool
6: Load the segmentation network 𝑈𝜎
7: Initialize 𝑡 = 0, 𝑗 = 0, 𝑟𝑡 = 0
8: repeat
9: Load the encoder of 𝑈𝜎 as the feature extraction module 𝐸𝜎 to get the state 𝑠𝑡 = 𝐸𝜎(𝑥)
0: With probability 𝜖, select a random augmentation operation 𝑎𝑡;
1: otherwise, select 𝑎𝑡 = argmax𝑎𝑄(𝑠𝑡, 𝑎; 𝜃, 𝛼, 𝛽)
2: Performing action 𝑎𝑡 on (𝑥, 𝑦) to get the augmentation image (𝑥𝑡, 𝑦𝑡)
3: Optimize the model parameter 𝜎 by fine-tuning with (𝑥𝑡, 𝑦𝑡) to get 𝜎∗
4: Calculate a new dice 𝐷𝑆𝐶 𝑡 = 𝐷𝑖𝑐𝑒 (𝑈𝜎∗ (𝑍), 𝑊 )
5: Calculate the difference between the two segmentation dices 𝐷𝑆𝐶 𝑡 and 𝐷𝑆𝐶 𝑡−1, 𝐷𝑆𝐶 𝑡 and 𝐷𝑆𝐶 𝑖𝑛𝑖𝑡, respectively
6: 𝐷𝑟 = 𝐷𝑆𝐶 𝑡-𝐷𝑆𝐶 𝑡−1
7: 𝐷𝑎𝑏𝑠 = 𝐷𝑆𝐶 𝑡-𝐷𝑆𝐶 𝑖𝑛𝑖𝑡
8: if 𝐷𝑎𝑏𝑠 > 0
9: Update reward 𝑟𝑡 = 𝐷𝑟
0: else if 𝐷𝑎𝑏𝑠 ≤ 0 & 𝐷𝑟 > 0
1: Update reward 𝑟𝑡 = −𝑒−𝐷𝑟

2: else
3: Update reward 𝑟𝑡 = −𝑚
4: end if
5: if 𝑟𝑡 < 0
6: 𝑗 ← 𝑗 + 1
7: end if
8: Update (𝑥, 𝑦) = (𝑥𝑡, 𝑦𝑡)
9: Update 𝑡 = 𝑡 + 1
0: Perform a gradient descent step on 𝑝 with respect to the network parameters 𝜃, 𝛼, and 𝛽
1: until 𝑗 = 𝑗𝑚𝑎𝑥
2: G = G ∪ (𝑥, 𝑦)
3: end for
utput: Augmentation training set G
A larger DSC indicates better segmentation model performance, while
a smaller DSC suggests poorer performance. Therefore, we use the
DSC to calculate and constrain the value of the reward, aiming to
encourage the agent to select the best augmentation transformation
that improves the performance of the segmentation model. Specifically,
we first obtain the initial segmentation accuracy 𝐷𝑆𝐶 𝑖𝑛𝑖𝑡 of the model
𝑈 (𝜎) on the validation setV. Then, we use the image 𝑎𝑡 ⊙ 𝑥𝑡−1𝑖 after the
th transformation and its label 𝑎𝑡 ⊙ 𝑦𝑡−1𝑖 to fine-tune the model 𝑈 (𝜎)

to obtain 𝑈 (𝜎)𝑡 and its segmentation accuracy 𝐷𝑆𝐶 𝑡. After that, the
difference 𝐷𝑎𝑏𝑠 between the two segmentation accuracies is calculated:

𝐷𝑎𝑏𝑠 = 𝐷𝑆𝐶 𝑡 −𝐷𝑆𝐶 𝑖𝑛𝑖𝑡. (9)

We refer to the difference 𝐷𝑎𝑏𝑠 between the segmentation accuracy
of the model 𝑈 (𝜎) after each fine-tuning and its initial segmentation
accuracy as the absolute difference. 𝐷𝑎𝑏𝑠 represents the impact of
this augmented image on the performance of the model 𝑈 (𝜎) after 𝑡
times transformations. Therefore, the absolute difference 𝐷𝑎𝑏𝑠 contains
information about the effectiveness of performing multi-step transfor-
mations (i.e., augmentation sequences) on the original image 𝑥𝑖. Intro-
ducing 𝐷𝑎𝑏𝑠 for 𝑅𝑑𝑐 facilitates the evaluation of each transformation in
terms of the validity of the sequence.

Furthermore, in the iterative training of the agent, we calculate the
difference 𝐷𝑟 between 𝐷𝑆𝐶 𝑡 and the 𝐷𝑆𝐶 𝑡−1. Here, 𝐷𝑆𝐶 𝑡−1 is obtained
from the image fine-tuning model 𝑈 (𝜎) transformed in the previous
step. 𝐷𝑟 is referred to as the relative difference:

𝐷 = 𝐷𝑆𝐶 −𝐷𝑆𝐶 . (10)
6

𝑟 𝑡 𝑡−1 a
This relative difference considers the change in model accuracy be-
tween two adjacent transformations and is used to indicate the effect of
the 𝑡th transformation on the model 𝑈𝑡−1. Thus, 𝐷𝑟 contains information
about the effectiveness of performing a single-step transformation on
image 𝑥𝑡−1𝑖 .

Finally, by considering both the absolute difference between the
model accuracy after each augmentation and the initial accuracy, as
well as the relative difference between two adjacent augmentations, we
design a comprehensive reward function. The reward function is doubly
constrained by the absolute and relative differences, enabling it to
provide the corresponding reward or penalty to the agent based on the
three cases of segmentation model performance change. The first case
is that the difference 𝐷𝑎𝑏𝑠 between 𝐷𝑆𝐶 𝑡 and 𝐷𝑆𝐶 𝑖𝑛𝑖𝑡 is greater than 0,
indicating that the augmentation sequences obtained by the agent are
valid. If the difference 𝐷𝑟 between 𝐷𝑆𝐶 𝑡 and 𝐷𝑆𝐶 𝑡−1 is also greater
than 0, i.e., the 𝑡th transform is also valid for image 𝑥𝑡−1𝑖 , a reward
𝐷𝑟 will be given to the agent as positive feedback. This encourages
the agent to choose the most valid augmentation transformation for
the image and ensures the validity of the augmentation sequence. If 𝐷𝑟
is less than 0, then although the augmentation sequence is still valid,
the 𝑡th transformation is not conducive to improving the segmentation
model performance. In this case, a penalty 𝐷𝑟 is given to the agent as
negative feedback. The second case is 𝐷𝑎𝑏𝑠≤0 and 𝐷𝑟>0. In this case,
although the t-th transformation is valid, the augmentation sequence is
invalid. If 𝐷𝑟 is fed back to the agent directly as in other methods, the

gent will receive positive feedback when the augmentation sequence
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is invalid, which is not good for guiding the agent to find the best
augmentation sequence. In this case, we provide negative feedback to
penalize the agent. However, since the t-th transformation is valid,
we feed the agent a variable penalty value −𝑒−𝐷𝑟 based on the effect
of the t-th transformation on the performance improvement of the
segmentation model. When the performance improvement is large, the
penalty value is small; conversely, the penalty value is large. This
allows for a balanced consideration of the augmentation sequence as
well as the effectiveness of each transformation. The third case is
𝐷𝑎𝑏𝑠≤0 and 𝐷𝑟≤0. In this case, both the augmentation sequence and
the 𝑡th transformation are ineffective in improving the performance of
the segmentation model. Therefore, a larger negative feedback −𝑚 is
given to the agent as a penalty. Thus, the reward function is defined
as:

𝑅𝑑𝑐 =

⎧

⎪

⎨

⎪

⎩

𝐷𝑟, 𝑖𝑓 𝐷𝑎𝑏𝑠 > 0
−𝑒−𝐷𝑟 , 𝑖𝑓 𝐷𝑎𝑏𝑠 ≤ 0 & 𝐷𝑟 > 0
−𝑚, 𝑖𝑓 𝐷𝑎𝑏𝑠 ≤ 0 & 𝐷𝑟 ≤ 0.

(11)

Inspired by [48], to prevent the agent from experiencing difficulty
in convergence during training because the variance of the immediate
rewards is too large, many works [49] have used the reward clipping
technique in training. Like these works, we also use the reward clipping
technique to ensure stable learning for the agent. Specifically, we
restrict the immediate reward 𝑟𝑡 to be between [−1, 1]. That is, we cut
ll positive rewards greater than 1 at 1 and all negative rewards less
han −1 at −1 while keeping other rewards unchanged.

Since we use the reward clipping technique to limit the immediate
eward 𝑟𝑡 to between [−1, 1], we set m = 1 to penalize the case
here 𝐷𝑎𝑏𝑠≤0 and 𝐷𝑟≤0. The augmentation in this case is the worst
ecause neither the augmentation sequence nor the 𝑡th transformation
s effective in improving the performance of the segmentation model.
herefore the penalty value is maximum at this point.

The advantages of our reward function are as follows: (i) More
ccurate assessment of the validity of each transformation: We use
𝑎𝑏𝑠 and 𝐷𝑟 to dually constrain the reward function and break down

he specifics of the segmentation performance variation. Thus, we
ore specifically propose appropriate reward functions for different

ases to accurately reflect the impact of each transformation on the
egmentation model. (ii) Guarantee the validity of the augmentation
equence: Due to the dual constraints of the reward function by 𝐷𝑎𝑏𝑠
nd 𝐷𝑟, the resulting reward signal is correlated with the validity of
oth the augmentation sequence and each transformation. The goal
f the RL system is to maximize the cumulative reward, so the re-
ard signal with dual constraints can guide the agent in choosing the
est augmentation transformation while ensuring the validity of the
ugmentation sequence. In this way, we can provide more accurate
eedback to the agent based on the variation of the segmentation model
erformance and alleviate the problem that some of the augmented
ata are invalid.

.3. Automatic stopping mechanism

In ASDRL-AutoAug, we propose an automatic stopping mechanism,
SM, to remedy the problem of insufficient partial image augmenta-

ion. Specifically, when the transformed image continuously degrades
he performance of the segmentation model, i.e., if the image has a
ecreasing trend in its augmentation trajectory, then the subsequent
ransformations are unnecessary. At this point, the image has been
ugmented sufficiently, so the agent automatically stops the process of
ugmenting.

Because the performance change of the segmentation model can
ntuitively be represented by our proposed 𝑅𝑑𝑐 , we use the reward
alue of each step to judge the necessity of each transformation and
he adequacy of image augmentation, i.e., whether it is necessary to
ontinue or stop the augmentation at this time. This allows the agent
7

o automatically terminate the sequential transformation according o
o the image augmentation trajectory. Specifically, if 𝑟𝑡>0, then the
ransformed image effectively improves the performance of the segmen-
ation model, indicating that the current transformation is necessary
nd the augmentation of the image is insufficient. On the other hand,
f 𝑟𝑡≤0, the transformed image does not contribute to the performance
mprovement of the segmentation model, signifying that the current
ransformation is non-essential. Therefore, when 𝑟𝑡≤0 occurs 𝑛 times

consecutively, the augmentation transformation of image 𝑥𝑖 continues
to have a negative impact on the segmentation model. In this case, the
augmentation of 𝑥𝑖 is deemed unnecessary. Consequently, we conclude
its augmentation process and reset the environment to 𝑈 (𝜎). We use 𝑟𝑡

as a judgment condition to formalize a stop signal, denoted as 𝐷𝑜𝑛𝑒:

𝐷𝑜𝑛𝑒𝑡 =
{

1, 𝑖𝑓 𝑟𝑡 ≤ 0 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑛 𝑡𝑖𝑚𝑒𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(12)

hen the environment provides a reward to the agent, it concurrently
eeds a stop signal, prompting the agent to automatically stop the
ransformation of the current image when the augmentation necessity
ecomes insufficient.

The automatic stopping mechanism we propose offers two benefits.
irst, this intelligent approach ensures that each transformation before
topping the augmentation results in a smooth improvement in model
erformance. This is because once the transformed image begins to de-
rade the performance of the segmentation model, the agent promptly
nds the augmentation process for that image. Second, ASM enables
he construction of an approximately infinite search space, thereby
mproving the adequacy of image augmentation. This is attributed to
he search space size, which can be represented as 12𝑡, where 12 denotes
he number of actions. Given that our augmentation process lacks a
estriction on the maximum number of times, in theory, as 𝑡 tends to
∞, the search space becomes approximately infinite. This allows the
gent not to consider the maximum number of transformations and to
xplore the augmentation sequences that make the segmentation model
erform sufficiently well in an approximately infinite search space.

. Experiments

Extensive experiments have been conducted to evaluate our pro-
osed Adaptive Sequence-length based Deep Reinforcement Learning
ASDRL) model for Automatic data Augmentation (AutoAug) in in-
elligent medical image analysis (ASDRL-AutoAug). In this section,
e first present information about the datasets, experimental setup,
valuation metrics, and baselines in Sections Section 4.1 to 4.4. Second,
xtensive experiments are conducted to verify that the segmentation
odel utilizes our proposed ASDRL-AutoAug to improve the segmen-

ation performance more effectively than utilizing state-of-the-art data
ugmentation methods. Then, ablation studies are conducted to further
nvestigate the effectiveness and necessity of the proposed 𝑅𝑑𝑐 and
SM in ASDRL-AutoAug and to further demonstrate the effectiveness of

he different feedbacks in the proposed reward 𝑅𝑑𝑐 . Finally, additional
xperiments are conducted aiming to demonstrate the adaptiveness and
niversality of ASDRL-AutoAug and the effect of hyperparameter 𝑛 in
SM on the training time cost and the effectiveness of the augmented
ata.

.1. Datasets

Empirical studies of three public datasets confirm that our method
utperforms other baselines. As shown in Table 2, we evaluate our
ethod using three medical image datasets, which contain features
ith small datasets, small objects, and complex segmentation details

e.g., segmented edges) that are more representative of current medical
mages.

ardiac is a publicly available MRI dataset [50] for automatic segmen-
ation of the heart. It has a small number of data and small segmented

bjects, making it more challenging for segmentation tasks. The dataset
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Table 2
Datasets.

Datasets Images Size Modality Challenge Source

Cardiac [50] 1,350 320 × 320 MRI Small dataset with small segmented objects King’s College London
BUSI [51] 647 256 × 256 USI Tiny dataset with large variability Baheya Hospital of Cairo, Egypt
LiTs [50] 1588 512 × 512 CT Small dataset with large variability Several clinical sites
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is provided by King’s College London and contains 20 cases with a total
of 1350 slices, each with a size of 320 × 320 pixels.

USI is a publicly available dataset of breast ultrasound images [51]
or the automatic segmentation of breast cancer tumors. The difficulty
f its segmentation is the smaller number of data and the larger
natomical variability. The dataset is provided by Baheya Hospital for
arly Detection & Treatment of Women’s Cancer, Cairo, Egypt. The
mages are divided into three categories, including normal (no tumor),
enign tumor, and malignant tumor, with a total of 600 cases and 780

slices, each with a size of 256 × 256 pixels. We selected only the 647
slices containing tumors in the segmentation task.

LiTs [50] is a publicly available CT dataset for the automatic segmen-
tation of livers and tumors. It has large anatomical variability. The
dataset contains 131 cases, each containing approximately 512 × 512
CT slices, with the number of slices ranging from 29 to 299. Because
the number of slices in both the Cardiac and BUSI datasets is around
1000 and the segmentation task is singular in both cases, for a fair
comparison and analysis, we randomly selected 1588 slices from LiTs
and focused solely on liver segmentation.

To train and evaluate the network, the following preprocessing is
performed on the three medical image datasets mentioned above. First,
for Cardiac, we transform these 3D images to 2D images according to
the transverse section in a slice-by-slice manner [52]. Then, for all three
datasets, we normalize all input images to have zero mean and unit std.
Finally, for all datasets, 70% of the datasets are used for training, 10%
for validation, and 20% for testing.

4.2. Implementation details

Our experiments are implemented based on the PyTorch framework.
To evaluate the performance of ASDRL-AutoAug, we choose a randomly
initialized U-Net as our original baseline. In our experiments, several
state-of-the-art data augmentation methods applied to the field of med-
ical image segmentation are selected as data augmentation baselines,
and then their impact on downstream performance is evaluated by the
same U-Net. For a fair comparison, we repeat each experiment five
times and report the optimal results. In addition, we fix a random seed
to ensure that the same training result and evaluation result can be
obtained under the same hyperparameters.

For U-Net, we use the Adam [53] optimizer with an initial learning
rate set to 2.5 × 10−4, weight decay to 5 × 10−4, and batch size of 8.

e train on two NVIDIA GeForce GTX 2080 GPUs. For Dueling DQN,
he Adam optimizer is used, and the learning rate is set to 0.001. The
iscount factor 𝛾 is set to 0.1, and the feedback value m is set to 1. The
yper-parameter 𝑛 is set to 2 during training and to 1 during validation.
or the 𝜖-decreasing algorithm, the initial value of 𝜖 is set to 1. The
ecreasing value is 3.3×10−5 in each iteration with a minimum value of
.01. We perform the training of Dueling DQN on four NVIDIA GeForce
TX 2080 GPUs. The learning rate is set to 5×10−6 when fine-tuning
-Net. Our source code has been released on https://github.com/zhx-
ebut/ASDRL-AutoAug.

.3. Evaluation metrics

To show the effectiveness of our method, we use six widely used seg-
entation evaluation metrics including mean Intersection over Union

mIoU), Dice Similarity Coefficient (DSC), Positive Predict Value (PPV),
8

ensitivity (SEN), 95% Hausdorff distance (HD95) [54] and Average a
urface Distance (ASD). Specifically, mIoU is the ratio of the intersec-
ion and concatenation of the ground truths and the predicted values,
hich can measure the model’s ability to identify training samples and
oundary inference, and effectively compare the performance of each
odel. DSC, also known as F1-measure or F1-score, is the summed

verage of PPV and SEN, which can be used to evaluate the overlap
etween the outputs and the ground truths comprehensively. PPV, also
nown as precision, is the proportion of true positive cases out of all
amples predicted to be positive. SEN, also known as recall, is the
roportion of the positive samples that are correctly predicted to be
ositive. HD95 represents the 95% quantified value of the maximum
urface distance between the prediction and the ground truths, which
an reduce the influence of outliers and make the evaluation more
table and reliable. ASD is the average distance between the set of
rediction points and the set of ground truth points. It is worth noting
hat higher values for these metrics, except HD95 and ASD, mean better
erformance. Formally,

𝐼𝑜𝑈 = 1
𝐾 + 1

𝑘
∑

𝑖=0

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (13)

𝑆𝐶 = 2 × 𝑃𝑃𝑉 × 𝑆𝐸𝑁
𝑃𝑃𝑉 + 𝑆𝐸𝑁

= 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (14)

𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (15)

𝑆𝐸𝑁 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (16)

𝐷95 = 𝑚𝑎𝑥𝑘95%[𝑑(𝑃 ,𝐺), 𝑑(𝐺, 𝑃 )], (17)

𝑆𝐷 =
𝑑(𝑃 ,𝐺)
∣ 𝑃 ∣

, (18)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are the number of true positive points, false
positive points, and false negative points, respectively. 𝑇 is the number
of ground-truth points of that class, 𝑃 is the number of predicted
positive points, 𝐺 is the number of ground-truth positive points, and
𝑑(∗) is a function to calculate the surface distance. Consequently, DSC,

IoU, PPV, and SEN range from 0 to 1; HD95 and ASD range from 0
o +∞; and none of these metrics have specific units.

.4. Baselines

In the downstream segmentation task, we perform supervised train-
ng on the randomly initialized U-Net [44] with the mixed training set

of initial training set N and augmented training set G and then test
he segmentation accuracy on the test set T =

{

(𝑝1, 𝑞1),… , (𝑝𝑘, 𝑞𝑘)
}

.
To evaluate the performance of the proposed ASDRL-AutoAug, thir-

een state-of-the-art data augmentation methods 3-Augment [13], Ran-
om Aug [7], Cutout [27], Cutmix [34], Mixup [33], saliencyMix [17],
andom Erasing [15] , GridMask [29], SLSRL [41], DADA [38], Keep-
ugment [16], ADA-DRL [25], and RandAugment [20] were selected
s the baselines. The reasons for selecting these thirteen methods as
aselines are as follows. (i) 3-Augment and Random Aug are random
ata augmentation methods capable of randomly selecting a transform
mong the given image transformations with equal probability. In

https://github.com/zhx-hebut/ASDRL-AutoAug
https://github.com/zhx-hebut/ASDRL-AutoAug
https://github.com/zhx-hebut/ASDRL-AutoAug


Computers in Biology and Medicine 169 (2024) 107877Z. Xu et al.
Table 3
The results of applying the proposed ASDRL-AutoAug and the state-of-the-art baselines on three public datasets, where the best and the second-best results are bold and underlined,
respectively.

Datasets Methods DSC ↑ mIoU ↑ PPV ↑ SEN ↑ HD95 ↓ ASD ↓

Cardiac

U-Net [44] 0.7566 0.6605 0.7682 0.8011 8.0114 2.5489
3-Augment [44] 0.7612 0.6545 0.7416 0.8264 10.0534 3.6543
Random Aug [7] 0.7637 0.6570 0.7506 0.8398 7.6250 2.0446
Cutout [27] 0.7663 0.6630 0.7426 0.8403 7.2624 2.2894
Mixup [33] 0.7698 0.6749 0.7780 0.8123 11.9769 4.5322
Cutmix [34] 0.7716 0.6592 0.7651 0.8286 8.4839 2.2331
SaliencyMix [17] 0.7828 0.6895 0.7908 0.8137 6.5083 1.9798
Random Erasing [15] 0.7881 0.6955 0.8119 0.7929 6.5787 2.6248
GridMask [29] 0.7919 0.6993 0.8048 0.8151 6.9764 2.2509
SLSRL [41] 0.7927 0.6951 0.7874 0.8368 5.7985 1.5747
DADA [38] 0.7948 0.6947 0.7880 0.8446 9.1693 2.7868
KeepAugment [16] 0.7953 0.6971 0.7995 0.8287 5.9727 1.9316
ADA-DRL [25] 0.7963 0.7023 0.7889 0.8449 7.3819 2.2527
RandAugment [20] 0.8002 0.7031 0.8053 0.8359 5.7941 1.8948

Ours 0.8122 0.7126 0.8140 0.8495 4.8361 1.2844

BUSI

U-Net [44] 0.7121 0.6059 0.7487 0.7882 28.4540 10.0333
3-Augment [44] 0.7205 0.6077 0.7204 0.7989 38.2277 14.8325
Random Aug [7] 0.7313 0.6260 0.7333 0.8226 30.7283 11.1877
Cutout [27] 0.7357 0.6315 0.7480 0.8101 27.1448 10.0033
Mixup [33] 0.7413 0.6438 0.7824 0.7908 26.2881 9.7748
Cutmix [34] 0.7469 0.6410 0.7343 0.8277 29.6330 11.4890
SaliencyMix [17] 0.7521 0.6476 0.7590 0.8198 27.1902 9.2420
Random Erasing [15] 0.7528 0.6513 0.7633 0.8263 27.7175 11.2242
GridMask [29] 0.7638 0.6640 0.7822 0.8250 28.1392 9.8012
KeepAugment [16] 0.7649 0.6641 0.7909 0.8111 24.4839 9.5988
SLSRL [41] 0.7661 0.6691 0.7818 0.8247 24.4643 8.9452
DADA [38] 0.7681 0.6653 0.7652 0.8329 32.2603 10.6599
ADA-DRL [25] 0.7760 0.6749 0.7851 0.8397 23.6102 8.6173
RandAugment [20] 0.7767 0.6767 0.7993 0.8251 22.6456 8.5182

Ours 0.7936 0.6943 0.8102 0.8350 22.6225 7.8293

LiTs

U-Net [44] 0.7868 0.6859 0.8879 0.7493 23.5688 4.6414
3-Augment [44] 0.8067 0.7323 0.8857 0.7741 17.2253 4.6966
Random Aug [7] 0.8081 0.7204 0.8583 0.7867 20.6727 5.2243
Cutout [27] 0.8093 0.7139 0.9014 0.7575 21.1350 3.7483
Mixup [33] 0.8172 0.7251 0.8939 0.7750 16.1688 3.5270
Cutmix [34] 0.8229 0.7386 0.8914 0.7826 15.4874 5.5498
SaliencyMix [17] 0.8276 0.7352 0.9107 0.7958 19.9658 3.4425
Random Erasing [15] 0.8327 0.7418 0.9103 0.7885 18.5983 3.9739
GridMask [29] 0.8417 0.7583 0.9011 0.8031 14.9505 3.9117
SLSRL [41] 0.8504 0.7715 0.8747 0.8487 16.7822 4.9585
KeepAugment [16] 0.8585 0.7876 0.9087 0.8503 13.0604 2.8398
DADA [38] 0.8655 0.7926 0.9167 0.8313 11.4246 3.4568
ADA-DRL [25] 0.8748 0.8075 0.9031 0.8697 10.8029 2.6642
RandAugment [20] 0.8777 0.8126 0.9229 0.8548 7.5151 2.2261

Ours 0.8951 0.8362 0.9248 0.8866 6.2526 2.1777
particular, 3-Augment selects a transform from the given three trans-
formations, while Random Aug selects a transform from the 12 trans-
formations in Table 1; (ii) Cutout generates richer images by region
erasing. Random Erasing and GridMask introduce random and multi-
scale grid masking for region erasing, respectively, and the image eras-
ing process is more complicated; (iii) KeepAugment is a single-image
mixing technique based on saliency features, Mixup mixes two images
and corresponding labels based on the mixing factor (alpha), Cutmix
and SaliencyMix introduce randomness and saliency for multi-image
mixing, respectively. These methods can force the model to better learn
the representational information of the images; and (iv) RandAugment
is an automatic data augmentation based on grid search; SLSRL and
ADA-DRL are automatic data augmentation based on DRL for medical
images; and DADA is a differentiable automatic data augmentation.
All four of these methods can find suitable combinations among given
augmentation transformations.

4.5. Main results

To demonstrate the effectiveness of our proposed ASDRL-AutoAug,
we conducted experiments on three public datasets and compared
ASDRL-AutoAug with thirteen state-of-the-art baselines for medical
9

image data augmentation. The quantitative experimental results are
shown in Table 3, and the visualization of the effects of different data
augmentation methods on the performance of the segmentation model
is shown in Fig. 3. Through quantitative and qualitative analysis, we
draw the following conclusions.

As shown in Table 3, first, SaliencyMix, Random Erasing, Grid-
Mask, and KeepAugment outperform 3-Augment and Random Aug for
three datasets with respect to DSC, mIoU, and PPV. This is because
image erasing and image mixing, two advanced image augmentation
transformations can force the model to better learn the representa-
tional information of the images by generating richer images. This
demonstrates that increasing the diversity of training samples can
improve the performance of deep models. Second, we observe that
SaliencyMix, Random Erasing, GridMask, SLSRL, DADA, and Keep-
Augment generally outperform Cutout, mixup, and Cutmix on three
datasets. This is because Random Erasing and GridMask generally mask
more accurately by randomly determining the mask size and applying
multi-scale grid masking; SaliencyMix and KeepAugment use saliency
information to increase or retain salient regions more accurately; SLSRL
and DADA automatically select more appropriate augmentation proba-
bilities or operations for the images. This proves that more accurate
transformations for different images are better than blindly selected
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Fig. 3. Examples of visualized segmentation results of our proposed ASDRL-AutoAug and the baselines on three public datasets.
transformations. Then, we find that ADA-DRL outperforms SaliencyMix,
Random Erasing, GridMask, SLSRL, DADA, and KeepAugment on DSC,
mIoU, and SEN. This is because ADA-DRL automatically selects the
sequence of basic transformations for each image by training with the
task network interaction, such that the selection of augmentation trans-
formations is more accurate than random or saliency-based methods.
This further demonstrates that more accurate transformations for dif-
ferent images can better improve the performance of the deep models.
In addition, we observe that RandAugment generally outperforms the
previous data augmentation methods on three datasets. This is because
RandAugment automatically finds the number and magnitude of data
augmentation transformations by grid search. This demonstrates that
the suitable number of transformations for different images is different
and that setting the maximum length of the augmentation sequence
based on human a priori leads to the insufficient augmentation of some
images.

Finally, we find that our proposed ASDRL-AutoAug achieves more
significant improvements over all baselines on the Cardiac, BUSI, and
LiTs datasets, which proves that our proposed ASDRL-AutoAug is more
effective than the current data augmentation methods. Specifically,
we first find that ASDRL-AutoAug is 1.2%, 0.95%, 0.21%, and 0.46%
higher than the second-best results on the Cardiac dataset for DSC,
mIoU, PPV, and SEN, respectively, and 0.9580 and 0.6104 lower for
HD95 and ASD, respectively; while on the BUSI dataset, DSC, mIoU,
and PPV are 1.69%, 1.76%, and 1.09% higher, and HD95 and ASD
are 0.0231 and 0.6889 lower, respectively than the second best result.
SEN is the second-best result and very close to the best result; On
the LiTs dataset, ASDRL-AutoAug outperforms the second-best result
by 1.74%, 2.36%, 0.19%, and 1.69% for DSC, mIoU, PPV, and SEN,
respectively, and 1.2625 and 0.0484 for HD95 and ASD, respectively.
This demonstrates that ASDRL-AutoAug achieves a better performance
than state-of-the-art data augmentation methods in medical image
segmentation tasks. In particular, we observe that ASDRL-AutoAug
improves more on the BUSI dataset than on Cardiac datasets (e.g., DSC,
and mIoU). This observation suggests that ASDRL-AutoAug is still
effective and even more significantly improved on datasets with smaller
data volumes. The reasons for the superior performance of ASDRL-
AutoAug are as follows. (i) ASDRL-AutoAug can automatically increase
10
the diversity of training images by selecting the data augmentation
sequence that is more conducive to improving model accuracy for
each image through interactive training; (ii) ASDRL-AutoAug uses the
reward 𝑅𝑑𝑐 with dual constraints to improve the accuracy of the eval-
uation for transformations, and can solve the problem that some of the
augmented images are invalid by accurately selecting the augmentation
transformations; and (iii) ASDRL-AutoAug uses the automatic stopping
mechanism ASM to select different numbers of transformations for
different images adaptively, which can solve the problem that some of
the images are not augmented adequately.

Fig. 3 shows the visualized segmentation results of ASDRL-AutoAug
and the baselines on nine examples from three datasets. Specifically,
the cardiac images (at the first three rows) show that: (i) the segmen-
tation results of Random Aug, Cutout, Mixup, Cutmix, SaliencyMix,
RandErasing, and GridMask are very incorrect and sometimes even
under-segmented (e.g., Random Aug, Mixup, Cutmix, and SaliencyMix
in the first row) or over-segmented (e.g., Cutout, RandErasing, and
GridMask in the second row, and Random Aug, Cutout, Mixup, and
Cutmix in the third row); (ii) KeepAugment, SLSRL, DADA, ADA-DRL,
and RandAugment are better, but their performance is not satisfactory
for the edge regions of the organs; (iii) the segmentation performance of
our proposed ASDRL-AutoAug is much better than the baselines, and its
segmentation results retain more details in the foreground regions and
are very close to the ground truths. Similarly, we have the following
observations for the breast images. (i) Random Aug, Cutout, Mixup,
Cutmix, SaliencyMix, RandErasing, and GridMask cannot segment the
tumor correctly, and under-segmentation (e.g., the fourth row) and
over-segmentation (e.g., the sixth row) still exist; (ii) KeepAugment,
SLSRL, DADA, ADA-DRL, and RandAugment do not segment the tumor
edge region satisfactorily; (iii) among all data augmentation meth-
ods, the proposed ASDRL-AutoAug has the best segmentation results.
Finally, the liver images (at the last three rows) show that: (i) the
segmentation results of Random Aug, Cutout, Mixup, Cutmix, Salien-
cyMix, RandErasing, and GridMask suffer from under-segmentation
and over-segmentation; (ii) the segmentation results of KeepAugment,
SLSRL, DADA, ADA-DRL, and RandAugment have unsatisfactory perfor-
mance in terms of the edge region of the organ; (iii) the segmentation
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Table 4
Results of ablation experiments using different reward functions and using different stopping mechanisms, where the best and second best results are bold and underlined,
respectively.

Datasets Methods DSC ↑ mIoU ↑ PPV ↑ SEN ↑ HD95 ↓ ASD ↓

𝑅𝑎𝑏𝑠 𝑅𝑟 𝑅𝑑𝑐 ASM

Cardiac

✓ – – – 0.7881 0.6955 0.8119 0.7929 6.5787 2.6248
– ✓ – – 0.7963 0.7023 0.7889 0.8449 7.3819 2.2527
– – ✓ – 0.8023 0.7051 0.8011 0.8386 6.5036 1.5219
✓ – – ✓ 0.7931 0.6926 0.7853 0.8429 6.4490 1.7082
– ✓ – ✓ 0.7996 0.7071 0.8060 0.8411 5.4744 1.5426
– – ✓ ✓ 0.8122 0.7126 0.8140 0.8495 4.8361 1.2844

BUSI

✓ – – – 0.7726 0.6684 0.7884 0.8289 32.3332 10.0995
– ✓ – – 0.7760 0.6749 0.7851 0.8397 23.6102 8.6173
– – ✓ – 0.7887 0.6908 0.8085 0.8322 23.6218 8.7044
✓ – – ✓ 0.7755 0.6743 0.8072 0.8177 30.3277 10.0257
– ✓ – ✓ 0.7806 0.6827 0.7892 0.8202 28.2153 7.5418
– – ✓ ✓ 0.7936 0.6943 0.8102 0.8350 22.6225 7.8293

LiTs

✓ – – – 0.8670 0.7965 0.8920 0.8727 10.7099 3.2821
– ✓ – – 0.8748 0.8075 0.9031 0.8697 10.8029 2.6642
– – ✓ – 0.8869 0.8244 0.9085 0.8826 10.8770 3.6674
✓ – – ✓ 0.8730 0.8009 0.9139 0.8502 10.7815 3.1534
– ✓ – ✓ 0.8840 0.8214 0.8990 0.8914 13.4559 4.0415
– – ✓ ✓ 0.8951 0.8362 0.9248 0.8866 6.2526 2.1777
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performance of our proposed ASDRL-AutoAug is much better than
the baselines. Thus, these visualization examples once again greatly
demonstrate that ASDRL-AutoAug compensates for the shortcomings
of existing data augmentation methods through the proposed reward
𝑅𝑑𝑐 and ASM, and achieves a better performance in medical image
segmentation tasks.

4.6. Ablation studies

To demonstrate the effectiveness and necessity of each improvement
proposed in ASDRL-AutoAug, we conduct ablation studies, and the
experimental results are shown in Table 4. In addition, to further
demonstrate the effectiveness of the different feedbacks in the proposed
reward 𝑅𝑑𝑐 , we conduct ablation studies on three datasets, and the
corresponding results are shown in Table 5.

4.6.1. Effectiveness and necessity of 𝑅𝑑𝑐 and ASM
To further investigate the effectiveness and necessity of our pro-

osed reward 𝑅𝑑𝑐 and automatic stopping mechanism ASM, we conduct
blation studies on three datasets, and the results are shown in Table 4,
here 𝑅𝑎𝑏𝑠 = 𝐷𝑎𝑏𝑠 and 𝑅𝑟 = 𝐷𝑟 represent the reward function that

eeds back only 𝐷𝑎𝑏𝑠 or 𝐷𝑟 in all cases. When the ASM is not used, the
topping mode is the same as ADA-DRL.

As shown in Table 4, we can find that, first, the automatic data
ugmentation method combining 𝑅𝑑𝑐 and ASM outperforms the other
xperimental results in the segmentation task on three datasets. Specifi-
ally, on the Cardiac dataset, the sixth row outperforms the second-best
esults by 0.99%, 0.55%, 0.8%, and 0.46% for DSC, mIoU, PPV, and
EN, respectively, and by 0.6383 and 0.2375 for HD95 and ASD,
espectively; on the BUSI dataset, DSC, mIoU, and PPV are higher
han the second-best results by 0.49%, 0.35%, and 0.17%, respectively,
D95 is 0.9877 lower than the second best result, and SEN, ASD
re the second-best result and very close to the best result; on the
iTs dataset, DSC, mIoU, and PPV were 0.82%, 1.18%, and 1.09%
igher than the second-best result, and HD95 and ASD were 4.4573
nd 0.4865 lower, respectively, with SEN being the second-best result
nd very close to the best result. This demonstrates that the automatic
ata augmentation method combining 𝑅𝑑𝑐 and ASM can significantly
mprove the segmentation performance. This is because 𝑅𝑑𝑐 and ASM
re targeted to solve different problems and can complement each
ther to better improve the effectiveness of data augmentation. Second,
omparing the third row with the first and second rows (resp., the sixth
ow with the fourth and fifth rows), i.e., using 𝑅𝑑𝑐 and other rewards
n the same stopping conditions, we find that 𝑅 performs better. For
11

𝑑𝑐
xample, on three datasets, DSC and mIoU in the third row (resp., sixth
ow) are larger than in the first and second rows (resp., the fourth and
ifth rows). This is because the accurate feedback by 𝑅𝑑𝑐 for the specific
ase of the augmentation trajectory can improve the accuracy of the
ssessment of the validity of each augmentation transformation. It is
hus demonstrated that 𝑅𝑑𝑐 achieves an accurate assessment of each
ugmentation transformation by dual constraints, which can guarantee
he validity of the augmentation sequence, i.e., it can better improve
he performance of the segmentation model. Finally, comparing the
irst and fourth rows, the second and fifth rows, and the third and
ixth rows, respectively, we find that the DSC of the latter is greater
han that of the former on three datasets. This observation suggests
hat data augmentation using ASM under the same reward conditions
s more effective than data augmentation with the maximum number
f transformations. This is because ASM solves the problem of limited
equence length in other automatic data augmentation algorithms,
llowing the agent to find the augmentation transformations for each
mage in turn without considering the maximum number of trans-
ormations, thus ensuring that the augmentation sequence leads to a
ufficient improvement in the segmentation model performance. Thus,
his proves the effectiveness of ASM in automatic data augmentation
lgorithms.

The above observations show that both the proposed 𝑅𝑑𝑐 and ASM
re effective and essential for ASDRL-AutoAug to achieve a superior
edical image data augmentation.

.6.2. Effectiveness of different feedbacks in 𝑅𝑑𝑐
To further demonstrate that the proposed reward 𝑅𝑑𝑐 is accurate for

the evaluation of the augmentation transformation in different cases,
we conduct ablation experiments on the feedback functions in different
cases, and the corresponding results are shown in Table 5, where
𝑅𝑎 = 𝐷𝑎𝑏𝑠, 𝑅𝑏 = −𝑒−𝐷𝑎𝑏𝑠 , 𝑅𝑐 = −𝑚, 𝑅𝑑 = 𝐷𝑟, and 𝑅𝑒 = −𝑒−𝐷𝑟 . In
ection 4.6.1, we have proved the validity of ASM, so in this section,
e only perform experiments under the condition of using ASM and do
ot verify the validity of ASM anymore.

In Table 5, first comparing the first and fourth rows of each dataset
eparately, we find that feeding 𝑅𝑑 in all three cases is more effective
han feeding 𝑅𝑎 in all three cases. This is because although 𝑅𝑎 is
eneficial to ensure the validity of the augmentation sequence, the aug-
entation sequence is composed of each transformation in sequence.

o, 𝑅𝑑 ensures the validity of each transformation first before the
alidity of the sequence can be guaranteed with the aid of 𝑅𝑎. Second,

comparing the first and second rows (resp., fourth and fifth rows), we
find that when changing only the feedback function in the case of 𝐷
𝑎𝑏𝑠
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Table 5
Ablation studies of the feedback functions under different conditions when using ASM, where 𝑅𝑎 = 𝐷𝑎𝑏𝑠, 𝑅𝑏 = −𝑒−𝐷𝑎𝑏𝑠 , 𝑅𝑐 = −𝑚, 𝑅𝑑 = 𝐷𝑟, and 𝑅𝑒 = −𝑒−𝐷𝑟 . The best and the
second-best results are bold and underlined, respectively.

Datasets Rewards DSC ↑ mIoU ↑ PPV ↑ SEN ↑ HD95 ↓ ASD ↓

𝐷𝑎𝑏𝑠 > 0 𝐷𝑎𝑏𝑠 ≤ 0 𝐷𝑎𝑏𝑠 ≤ 0
𝐷𝑟 > 0 𝐷𝑟 ≤ 0

Cardiac

𝑅𝑎 𝑅𝑎 𝑅𝑎 0.7931 0.6926 0.7853 0.8429 6.4490 1.7082
𝑅𝑎 𝑅𝑎 𝑅𝑐 0.7984 0.7010 0.7817 0.8588 10.5937 2.7425
𝑅𝑎 𝑅𝑏 𝑅𝑐 0.7994 0.6977 0.8037 0.8326 7.9681 1.9105
𝑅𝑑 𝑅𝑑 𝑅𝑑 0.7996 0.7071 0.8060 0.8411 5.4744 1.5426
𝑅𝑑 𝑅𝑑 𝑅𝑐 0.8019 0.7061 0.8197 0.8290 6.2534 1.4012
𝑅𝑑 𝑅𝑒 𝑅𝑐 0.8122 0.7126 0.8140 0.8495 4.8361 1.2844

BUSI

𝑅𝑎 𝑅𝑎 𝑅𝑎 0.7755 0.6743 0.8072 0.8177 30.3277 10.0257
𝑅𝑎 𝑅𝑎 𝑅𝑐 0.7770 0.6784 0.7684 0.8637 23.3161 9.2675
𝑅𝑎 𝑅𝑏 𝑅𝑐 0.7784 0.6767 0.7861 0.8431 23.8790 8.5102
𝑅𝑑 𝑅𝑑 𝑅𝑑 0.7806 0.6827 0.7892 0.8202 28.2153 7.5418
𝑅𝑑 𝑅𝑑 𝑅𝑐 0.7871 0.6875 0.7786 0.8652 30.8569 9.6859
𝑅𝑑 𝑅𝑒 𝑅𝑐 0.7936 0.6943 0.8102 0.8350 22.6225 7.8293

LiTs

𝑅𝑎 𝑅𝑎 𝑅𝑎 0.8730 0.8009 0.9139 0.8502 10.7815 3.1534
𝑅𝑎 𝑅𝑎 𝑅𝑐 0.8747 0.8048 0.9057 0.8598 12.2362 3.7651
𝑅𝑎 𝑅𝑏 𝑅𝑐 0.8769 0.8068 0.8730 0.9147 14.0705 4.5612
𝑅𝑑 𝑅𝑑 𝑅𝑑 0.8840 0.8214 0.8990 0.8914 13.4559 4.0415
𝑅𝑑 𝑅𝑑 𝑅𝑐 0.8931 0.8311 0.9183 0.8913 7.2722 2.4703
𝑅𝑑 𝑅𝑒 𝑅𝑐 0.8951 0.8362 0.9248 0.8866 6.2526 2.1777
Fig. 4. Process of transforming images with the proposed ASDRL-AutoAug and the actions at each time step. The first two rows are three examples from the Cardiac dataset, the
middle two rows are four examples from the BUSI dataset, and the last two rows are three examples from the LiTs dataset.
≤ 0 and 𝐷𝑟 ≤ 0, the DSC of the latter improves on three datasets. This
is because in this case, 𝑅𝑐 has a higher penalty value than 𝑅𝑎 (resp.,
𝑅𝑐 over 𝑅𝑑). This proves that the feedback 𝑅𝑐 is more accurate in
the case of 𝐷𝑎𝑏𝑠 ≤ 0 and 𝐷𝑟 ≤ 0. Then, comparing the fifth and sixth
rows, we find that when changing only the feedback function in the
case of 𝐷𝑎𝑏𝑠 ≤ 0 and 𝐷𝑟 > 0, the latter has a higher DSC and lower
HD95 on Cardiac, and both DSC and PPV are higher on BUSI; on the
LiTs dataset, the latter has higher DSC and mIoU. This is because 𝑅𝑒
feeds the appropriate penalty value to the agent in this case of invalid
augmentation sequences, but 𝑅𝑑 is a positive reward value in this case.
This proves that the feedback 𝑅𝑒 is more accurate when 𝐷𝑎𝑏𝑠 ≤ 0 and 𝐷𝑟
> 0. Finally, we find that the segmentation performance of the sixth row
outperforms the other experimental results. Specifically, on Cardiac,
12
the sixth row is 1.03% and 0.55% higher than the second-best result
in terms of DSC and mIoU, respectively, and 0.6383 and 0.1168 lower
in terms of HD95 and ASD, respectively, with PPV and SEN being the
second-best results; on BUSI, DSC, mIoU, and PPV are higher than the
second best results by 0.65%, 0.68%, and 0.3% respectively, HD95 is
0.6936 lower than the second-best result, and ASD is the second-best
result and very close to the best result; on the LiTs dataset, DSC, mIoU,
and PPV were 0.2%, 0.51%, and 0.65% higher, and HD95 and ASD were
1.0196 and 0.2926 lower, respectively, than the second-best results.
This is because 𝑅𝑑𝑐 provides different feedback values in different cases
of the augmentation trajectory, allowing a more accurate assessment
of the effectiveness of the augmentation transformations. This proves
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Table 6
Training time (in hours per epoch) and segmentation results of ASDRL-AutoAug under different settings of hyper-parameter 𝑛.

n Cardiac BUSI LiTs

DSC ↑ HD95 ↓ time ↓ DSC ↑ HD95 ↓ time ↓ DSC ↑ HD95 ↓ time ↓

1 0.7973 6.2629 0.8635 0.7625 25.4043 0.2386 0.8725 11.6184 1.7358
2 0.8122 4.8361 2.1292 0.7936 22.6225 0.7206 0.8951 6.2526 4.0573
3 0.8123 6.5988 4.5653 0.7940 22.6475 1.0703 0.8814 12.2457 10.4841
4 0.8111 5.5189 9.2457 0.7925 23.2981 4.2367 ⟋ ⟋ ⟋
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Fig. 5. The percentage of images in the dataset is calculated according to the number
of transformations in the image augmentation sequence at the time of testing.

that the different feedback values provided by 𝑅𝑑𝑐 in different cases
are valid.

4.7. Additional experiments

In this section, we aim to demonstrate the adaptiveness and uni-
versality of ASDRL-AutoAug and the effect of the hyperparameter 𝑛 in

SM on the training time cost and the effectiveness of the augmented
ata.

.7.1. Adaptiveness of ASDRL-AutoAug
To further demonstrate that the proposed ASDRL-AutoAug is adap-

ive, Fig. 4 visualizes the augmentation process of images in the three
atasets of Cardiac, BUSI, and LiTs. We can observe that, first, the
rained Dueling DQN tends to enlarge the segmented target regions or
ransform the images to different orientations during the augmentation
rocess to generate well-diversified and effective augmentation images
hat are still recognizable after the transformation. This proves that the
roposed ASDRL-AutoAug is effective. Second, the number of trans-
ormations used in the augmentation process is different for different
mages. In general, Dueling DQN automatically stops the augmentation
f this image when the augmented image highlights the segmentation
arget. This proves that the proposed ASDRL-AutoAug is adaptive to the
mages.

As shown in Fig. 5, we count the number of transformations of each
mage in the final augmentation sequence during the testing phase of
ueling DQN and calculate the percentage of images with different
umbers of transformations in the training set. We can observe that,
irst, for the three datasets Cardiac, BUSI, and LiTs, although the images
sing 5 to 6 transformations are the most numerous, the images using 7
nd more transformations still have a larger percentage. This suggests
hat the existing practice of setting a maximum value (e.g., 2 or 6)
or the number of transformations for all images is not reasonable.
n addition, there is a wide range of the number of transformations
sed for the images of the three datasets. Although there are more
13

m

mages with the number of transformations concentrated between 1
nd 13, there are still images using more than 13 transformations,
hich indicates that the number of transformations of images is diverse
hen using ASDRL-AutoAug. This proves that the sequence lengths of
ifferent images are adaptive when using ASDRL-AutoAug to augment
mages.

.7.2. Universality of ASDRL-AutoAug
To further demonstrate the universality of the proposed ASDRL-

utoAug, we apply ASDRL-AutoAug to five existing commonly used
egmentation models: U-Net, DANet [55], ResUNet++ [56], U-Net++
57], and U-Net3+ [58]. We compare the models trained without
ata augmentation, and models using four advanced data augmenta-
ion methods, SaliencyMix, GridMask, ADA-DRL, and RandAugment,
sing two evaluation metrics, DSC and HD95, on three datasets. The
orresponding experimental results are shown in Fig. 6.

As shown in Fig. 6, the proposed ASDRL-AutoAug can be used for
ny segmentation model and can significantly improve the segmenta-
ion performance. Specifically, first, we observe that on the Cardiac,
USI, and LiTs datasets, our proposed ASDRL-AutoAug improves the
SC of all segmentation models and significantly reduces the HD95
f all segmentation models. In particular, the worse the performance
f the segmentation models, the more ASDRL-AutoAug improves the
SC. This demonstrates that the proposed ASDRL-AutoAug can be used

or any segmentation model. In addition, ASDRL-AutoAug outperforms
ther data augmentation methods in both segmentation metrics on the
hree datasets, has the highest DSC improvement for all segmentation
odels, and reduces HD95 to a minimum. This demonstrates that

he proposed ASDRL-AutoAug can significantly improve segmentation
erformance.

.7.3. Effect of varying the hyper-parameter 𝑛
As shown in Eq. (12), the ASM in ASDRL-AutoAug uses the param-

ter 𝑛 to determine the persistence of performance degradation of the
egmentation model and then controls the feedback value of the stop
ignal. Therefore, the value of 𝑛 can greatly affect the training time-
ost and training quality of Dueling DQN, and thus the effectiveness
f data augmentation. Therefore, we conduct experiments on three
atasets, Cardiac, BUSI, and LiTs, to investigate the effect of varying the
yperparameter 𝑛 during the training phase on the training time-cost
f the Dueling DQN and the effectiveness of augmented data.

In Table 6, we use two commonly used segmentation metrics, DSC
nd HD95, to evaluate the effectiveness of the augmented data, and the
verage time per epoch to evaluate the training time of Dueling DQN.
pecifically, first, for both DSC and HD95, we find that: (i) segmentation
erformance is the worst when 𝑛 = 1, and when 𝑛 = 2, DSC is the next
ighest on both the Cardiac and BUSI datasets, DSC is the highest on
he LiTs dataset, and HD95 is the lowest on three datasets; (ii) DSC is
he best or second-best when 𝑛 = 3, respectively, but is close to DSC
f 𝑛 = 2; (iii) when 𝑛 = 4 or 5, the training of Dueling DQN fails
o converge. This is because, in the training phase, feeding back the
enalty value only once (𝑛 = 1) is not enough to indicate that the
erformance of the segmentation model is continuously decreasing, and
topping augmenting the current image at this time is not conducive to
mproving the adequacy of the augmentation. When 𝑛 ≤ 2 (i.e., two or
ore consecutive feedbacks of penalty values), the persistence of the
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Fig. 6. Results of the proposed ASDRL-AutoAug and state-of-the-art baselines applied on different segmentation models.
segmentation performance degradation can be indicated. However, set-
ting a larger value when 𝑛 can indicate the persistence of performance
degradation is unnecessary, because it will cause training difficulties to
converge, such as in the case of 𝑛 = 5. Second, in terms of training time,
we find that: (i) on three datasets, the training time is the lowest when
𝑛 = 1, and the training time is the next lowest when 𝑛 = 2; (ii) when
𝑛 = 3 or 4, the training time increases exponentially and is extremely
high; and (iii) when 𝑛 = 5, the training time is difficult to estimate.
This is because using 𝑛 = 1 in training is time-saving by sacrificing the
adequacy of image augmentation. Since 𝑛 = 2 is sufficient to account
for the persistence of performance degradation, using more times of
performance degradation to account for persistence when 𝑛 = 3 or 4
is unnecessary and causes serious time loss. Therefore, we use 2 as the
inal chosen value in the training phase.

. Discussion

.1. Social impact of ASDRL-AutoAug

The algorithm can be widely used in realistic scenarios where the
mount of data augmentation of medical images is required, effectively
educing the workload of doctors in data annotation and providing
more effective and reliable solution to the problem of insufficient

inely annotated data in intelligent medical image analysis. We use car-
iovascular radiotherapy as an example. Cardiovascular diseases, such
s coronary heart disease, hypertension, and myocardial infarction,
onstitute a prevalent class of health issues with high mortality rates,
mpacting tens of millions of people worldwide. For various etiologies,
maging physicians are required to segment the heart chambers and
dentify lesion areas to formulate suitable treatment plans and monitor
he treatment process. The adoption of automated segmentation tech-
iques can substantially decrease physicians’ diagnosis time. However,
ue to limitations in data annotation costs and concerns related to data
rivacy protection, acquiring large-scale, high-quality datasets becomes
hallenging. As a result, automated segmentation models encounter
verfitting problems due to data scarcity, restricting the efficiency and
erformance of models when deployed clinically. While traditional
ata augmentation methods can augment the number and diversity of
raining sets, these methods usually can only process images for certain
pecific transformations. This limitation can introduce excessive noise
nd variation, leading to the loss of crucial information or resulting
14
in data redundancy. However, our proposed ASDRL-AutoAug can auto-
matically generate an appropriate data augmentation policy based on
the characteristics of the data and the requirements of medical image
segmentation models. This automated process significantly augments
the size and diversity of the dataset without human intervention,
consequently enhancing data utilization, model generalization ability,
and robustness. Thus, our work significantly reduces the cost of medical
image annotation and physician workload while safeguarding data
privacy. Additionally, it enhances the performance of high-precision
intelligent medical image segmentation systems in various clinical ap-
plication scenarios, proving to be of great significance to the clinical
practice of computer-aided diagnosis and treatment.

5.2. Limitations and future work

Our proposed automatic stopping mechanism, ASM, enables the
agent to transform an image at a larger magnitude by selecting the same
augmentation operation multiple times, regardless of the maximum
number of augmentations. Therefore, interesting work in the future is
to further improve the action space of ASDRL-AutoAug and attempt to
constrain the operation amplitude to a certain range. This improvement
would enable ASDRL-AutoAug to concurrently select the amplitude
of the action based on visual information, thus allowing for a more
refined transformation of the image. Second, we will also explore
more intelligent and adaptive stopping criteria in our future work to
further increase the performances and innovative value of the proposed
work. In addition, in the future, we plan to conduct more experiments
to investigate the extension of ASDRL-AutoAug to other vision tasks,
such as object detection [59], image classification [60], and multi-
modal image segmentation [61,62]. This effort aims to address other
challenging problems arising from limited medical images.

6. Conclusion

In this work, we identified two drawbacks of existing deep rein-
forcement learning-based data augmentation approaches: the problem
of some augmented images being invalid and the problem of insuf-
ficient image augmentation. Subsequently, we proposed an Adaptive
Sequence-Length based Deep Reinforcement Learning (ASDRL) model
for Automatic Data Augmentation (AutoAug) in intelligent medical

image analysis, denoted ASDRL-AutoAug. ASDRL-AutoAug addresses
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these issues by utilizing a reward with dual constraints (𝑅𝑑𝑐) and
an automatic stopping mechanism (ASM) to achieve more effective
medical image augmentation. Specifically, the technical contribution of
ASDRL-AutoAug is twofold: first, 𝑅𝑑𝑐 is proposed in ASDRL-AutoAug to
ddress the problem of ineffectiveness in partially augmented images
y providing a more accurate assessment of the validity of the aug-
entation transformations. Second, to tackle the issue of insufficient

mage augmentation, ASM is proposed. ASM automatically stops the
ugmentation process of each image based on the change in the aug-
entation trajectory of that image, ensuring a smooth improvement of

he model performance before the augmentation is stopped. Extensive
xperimental studies on three real medical image segmentation datasets
emonstrate that the proposed ASDRL-AutoAug is significantly more
ffective than current image augmentation solutions for medical image
egmentation tasks. Both 𝑅𝑑𝑐 and ASM are shown to be effective
nd essential for the superior performance of ASDRL-AutoAug. Fur-
hermore, we illustrate that 𝑅𝑑𝑐 evaluates the transformations more
ccurately than existing reward functions; and ASDRL-AutoAug is adap-
ive to different images in terms of sequence length and proves to be
eneralizable across different segmentation models.
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